Recent Peer-Reviewed Publications


  1. Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., Carlo, E. H. D., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., and Weller, R. A. 2019. Autonomous seawater pCO2and pH time series from 40 surface buoys and the emergence of anthropogenic trends, Earth Syst. Sci. Data, 11, 421-439.
  2. Pilcher, D.J., D.M. Naiman, J.N. Cross, A.J. Hermann, S.A. Siedlecki, G.A. Gibson, and J.T. Mathis. 2019. Modeled effect of coastal biogeochemical processes, climate variability, and ocean acidification on aragonite saturation state in the Bering Sea. Mar. Sci., 5, 508,
  3. Hurst, T.P., Copeman, L.A., Haines, S.A., Meredith, S.D., Daniels, K., and K.M. Hubbard, 2019. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae, Marine Environmental Research, 145, 52-65.
  4. Andrade, J.F., Hurst, T.P., Miller, J.A. 2018. Behavioral responses of a coastal flatfish to predation-associated cues and elevated CO2. Journal of Sea Research, 140, 11-21.
  5. Cross, J.N., Mathis, J.T., Pickart, R.S., and Bates, N.R., 2017. Formation and transport of corrosive water in the Pacific Arctic region. Deep-Sea Res. II, 152, 67-81.
  6. Coffey, W.D., Nardone, J.A., Yarram, A., Long, W. C., Swiney, K.M., Foy, R.J., Dickinson, G.H., Ocean acidification leads to altered micromechanical properties of the mineralized cuticle in juvenile red and blue king crabs, Journal of Experimental Marine Biology and Ecology, 495, 1-12,
  7. Oxtoby, L.E., T. Mathis, L.W. Juranek, and M.J. Wooller, 2016. Estimating stable carbon isotope values of microphytobenthos in the Arctic for application to food web studies. Polar Biol., 39(3), 473-483,
  8. Hurst, T.P., B.J. Laurel, T. Mathis, and L.R. Tabosa (2016): Effects of elevated CO2levels on eggs and larvae of a North Pacific flatfish. ICES J. Mar. Sci., 73, 981–990,
  9. Mathis, J.T., Cooley, S.R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T., Hauri, C., Evans, W., Cross, J.N., Feely, R.A., (2015). Ocean Acidification Risk Assessment for Alaska’s Fishery Sector. Progress in Oceanography.
  10. Evans, W., Mathis, J.T., Cross, J.N., Bates, N.R., Frey, K.E., and Else, B.G.T., et al., 2015. Sea-air CO2 exchange in the western Arctic coastal ocean. Global Biogeochemical Cycles.
  11. Frisch, L.C., Mathis, J.T., Kettle, N.P., Trainor, S.F., 2015. Gauging perceptions of ocean acidification in Alaska. Marine Policy.
  12. Evans, W., Mathis, J.T., Ramsay, J., Hetrick, J., 2015. On the Frontline: Tracking Ocean Acidification in an Alaskan Shellfish Hatchery. PLOS One.
  13. Reisdorph, S.C. and Mathis, J.T., 2014. Assessing net community production in a glaciated Alaska fjord.  Biogeosciences Discuss.
  14. Cross, J.N., Mathis, J.T., Frey, K., Cosca, C., Danielson, S.L., Bates, N.R., Feely, R.A., Takahashi, T., Evans, W., (2014). Annual sea-air CO2 fluxes in the Bering Sea: Insights from new autumn and winter observations of a seasonally ice-covered continental shelf.  Journal of Geophysical Research.
  15. Bates, N.R., Garley, R., Frey, K.E., Shake, K.L., Mathis, J.T., (2014). Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice. Biogeosciences Discussions.

Full list as of 07/26/2019 [PDF]