Thomas Weingartner

Thomas Weingartner

Professor Emeritus

Physical Oceanography

College of Fisheries and Ocean Sciences
Institute of Marine Science
115 O'Neill
Fairbanks, AK 99775


North Carolina State University (Oceanography)

University of Alaska Fairbanks (Oceanography)


Curriculum Vitae



Danielson, S.L., L. Eisner, C. Ladd, C. Mordy, L. Sousa and T.J. Weingartner. (2017). "A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas". Deep Sea Research II. 135:7-26.

Weingartner, T. J., R. A. Potter, C. A. Stoudt, E. L. Dobbins, H. Statscewich, P. R. Winsor, T. D. Mudge, and K. Borg. (2017). "Transport and thermohaline variability in Barrow Canyon on the Northeastern Chukchi Sea Shelf". J. Geophys. Res. Oceans. 122

Ying-Chih Fang, T. J. Weingartner, R. A. Potter, P. R. Winsor, and H. Statscewich. (2015). "Quality Assessment of HF Radar Derived Surface Currents Using Optimal Interpolation". J. Atmos. Ocean Technol.. 32:282-296.

Danielson, S.L., T. W. Weingartner, K. Hedstrom, K. Aagaard, R. Woodgate, E. Curchitser, and P. Stabeno. (2014). "Coupled wind-forced controls of the Bering–Chukchi shelf circulation and the Bering Strait through- flow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient". Prog. Oceanogr..
doi: 10.1016/j.pocean.2014.04.006

T. Weingartner, E. Dobbins, S. Danielson, P. Winsor, R. Potter and H. Statscewich. (2013). "Hydrographic variability over the northeastern Chukchi Sea shelf in summer-fall 2008-2010". Continental Shelf Research.

Thomas Weingartner, E. Dobbins, S Danielson, P. Winsor, R. Potter, and H. Statscewich. (2013). "Hydrographic variability over the northeastern Chukchi Sea shelf in summer-fall 2008 – 2010". Continental Shelf Research. 62:5-22.

A. E. Gall, R. H. Day and T. J. Weingartner. (2012). "Structure and variability of the marine-bird community in the northeastern Chukchi Sea". Continental Shelf Research.

J. L. Kasper and T. J. Weingartner. (2012). "Modeling winter circulation under landfast ice: The interaction of winds with landfast ice". Journal of Geophysical Research-Atmospheres. 117

S. Danielson, K. Hedstrom, K. Aagaard, T. Weingartner and E. Curchitser. (2012). "Wind-induced reorganization of the Bering shelf circulation". Geophys. Res. Lett.. 39

S. Danielson, T. Weingartner, K. Aagaard, J. Zhang and R. Woodgate. (2012)." Circulation on the central Bering Sea shelf, July 2008 to July 2010". Journal of Geophysical Research-Oceans. 117

Niebauer, H.J., T.C. Royer and T.J. Weingartner. (1994). "Circulation of Prince William Sound, Alaska". Journal of Geophysical Research–Oceans. 99(C7):14113–14126.


  • Physical Oceanography
  • Physical oceanography of Alaskan continental shelves and slopes.
  • Interdisciplinary marine research
  • Wind- and buoyancy-forced shelf circulation systems



Current Research Projects

  • Chukchi Beaufort Circulation Study
  • GAK1
  • Satellite tracked drifters
  • Surface Currents
  • Continuing a 28-year time series of temperature and salinity variability on the Gulf of Alaska. The goal is to quantify this variability and determine its causes.
  • Understanding the seasonal variations in the physical environment of the Gulf of Alaska shelf as part of the US GLOBEC (Global Ocean Ecosystem Dynamics) Program The basis of many of the more productive shelves in the global ocean is upwelling of nutrient rich sub-surface water into the surface layers of the ocean. In contrast, the Gulf of Alaska is biologically productive but is a downwelling shelf that receives an enormous, nutrient-poor coastal freshwater discharge. Hence, the basis for this productivity is not understood. This research is a multi-year and multi-investigator effort to examine the physical basis for this production in terms of nutrient availability, primary and secondary production and distribution, and the success of young-of-the year salmon. The study involves bi-monthly cruises across this shelf to sample temperature, salinity, nutrients, phyoplankton, zooplankton, and juvenile salmon.