Assessing Arctic Grayling Relative Abundance and Distribution Through Environmental DNA Analysis

Kristen Reece, J. Andrés López, Maggie Harings
College of Fisheries and Ocean Sciences, University of Alaska Fairbanks

We acknowledge the Alaska Native nations located on the traditional lands of the Dena people of the lower Tanana River from which we collected our environmental samples from.

Grayling and eDNA
- Arctic Grayling (Thymallus arcticus) freshwater species
 - Broad distribution across Alaska
 - Opportunistic feeders; wide diet variety
 - Follow spawning salmonid to feed
 - Not an important species for subsistence harvest
 - Popular for sport fishing; various colors and sizes
- Environmental DNA analysis
 - Potential source of information of distribution, abundance, and ecology
 - qPCR (quantitative Polymerase Chain Reaction) strategy for extracted DNA to determine relative amount of species specific DNA
- Will we find an abundance of Arctic Grayling DNA in the Chena River during the salmon spawning season?

Methods
- Collected water samples with Citizen Science Sampler
 - 7 locations on 3 separate days: 3 samples each sample site
- Isolated DNA from filters
- Processed species specific assay with qPCR
- Processing samples through qPCR machine (qTOWER3 84)

Preliminary Analysis
- Tested assay specificity with tissue samples from Arctic Grayling and closely related/unrelated species (Table 1).
- High DNA concentrations of most salmonids indicate amplification during PCR (Image 5) and qPCR (Figure 1 & Table 2).
- qPCR indicates DNA concentrations of Chena River samples too low to amplify (Figure 2).

Discussion
- Latest qPCR analysis indicates eDNA sample concentrations are too low to amplify.
- Next Steps:
 - Further testing assay (Rodgers, et al) with known DNA concentrations to develop level of detection for Arctic Grayling.
 - Data configured in relation to Chum and Chinook salmon eDNA spawning periods

qPCR method may become a complementary technique in the field of assessing relative quantities of species over time and space.

Sources

Acknowledgements
BLaST is supported by the NIH Common Fund, through the Office of Strategic Coordination, Office of the NIH Director with the linked awards: TL4-118991, RL-5-118990, & UL-1-118991. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, UAF is an affirmative action / equal employment opportunity employer and educational institution: www.alaska.edu/nondiscrimination