Instructor Information

Name: Caleb Jurkowski
Office: Chapman 301C
Phone: 474-7988
E-mail: cjjurkowski@alaska.edu
Office Hours: TBD

Course Information

CRN: 51387
Credits: 4 credits
Prerequisites: C- or better in Math 251X
Lecture: MTWR 10:00-11:30 Chapman 104

Course Reading Materials

• *WebAssign Access Code*. You will be doing a significant portion of your homework online. To do this you must have a WebAssign access code. If you purchase your textbook from the UAF bookstore this code will come packaged with your text. If not, you can purchase one on www.webassign.net. If you have not yet purchased a code, don’t fret! WebAssign grants you a two-week “trial” period where you can use the service without paying. You also have access to an eBook on WebAssign.

Course Description

From the UAF course catalog:

“Techniques and applications of integration. Integration of trigonometric functions, volumes including those using slicing, arc-length, integration by parts, trigonometric substitutions, partial fractions, hyperbolic functions, and improper integrals. Numeric integration including Simpson’s rule, first order differential equations with applications to population dynamics and rates of decay, sequences, series, tests for convergence including comparison and alternating series tests, conditional convergence, power series, Taylor series, polar coordinates including tangent lines and areas, and conic sections.”

Calculus II begins by picking up where Calculus I ended, integration. During the first unit we will discuss some more sophisticated techniques for integration (Chapter 7). Before jumping into applications of integration, the second and third units will most likely be completely new for most students: sequences and series (Chapter 11). Sequences and series can be used to attack many problems including, but not limited to, approximation of functions and approximation of integrals. We will then return to applications of integration to physics and engineering (Chapters 6 & 8). We end the course with a few new methods of representing curves (Chapter 10). Specifically, we will discuss how curves can be represented using parameterizations and discuss an alternative system of graphing called the polar coordinate system. This topic functions as a preview to some of the crucial ideas which will be covered in Calculus III.

Course Goals

In this course students will be expected to master problem solving skills, learn to manipulate abstract symbols and develop deductive arguments in mathematics. Additionally, students will encounter a broad spectrum of mathematical applications including, but not limited to:

• Various techniques of integration,
• Integration of improper integrals,
Applications of integration to areas, volumes, arc length, work, and centroids.

Convergence and divergence of sequences and series.

Power series and their applications.

Parameterizations of curves and polar coordinates.

Instructional Methods

This course will be primarily lecture-based with daily work assigned on WebAssign, weekly written homework, weekly in-class quizzes, and occasional in-class activities. Instruction will be supplemented with frequent assessment so that the instructor (and you!) can monitor your learning. Participation during class is encouraged, and an attempt to address all questions in full will be made.

Students are required to attend all course sessions. Attendance will be taken daily. **Excessive absences could lead to a faculty-initiated withdrawal since you have not participated substantially in the course.** Successful, timely completion of this course depends on committing yourself early and maintaining your effort.

Blackboard will be used extensively in this class to communicate with students. All announcements, handouts, solutions, and grades will be posted in Blackboard. It is the responsibility of the student to check Blackboard regularly and report any issues to their instructor. Additionally, the student must check their @alaska.edu e-mail daily. If you prefer to use another e-mail it is best to set up your @alaska.edu account to forward to your preferred account.

This should go without saying, but in class **PUT YOUR CELL PHONES AWAY.** The instructor has little patience and even less tolerance for the use of cell phones during class. It can wait until after class - if it can’t (an emergency), please leave class to take care of business.

Evaluation

In this course you will be evaluated mainly based on your performance in homework, quizzes, midterm exams and a final exam. Student grades will be dependent upon: WebAssign homework (5%), written homework (15%), in-class quizzes (10%), three midterm exams (45%), and the (cumulative) final exam (25%). More details on each of the categories can be found below.

The grading scale used will be the plus/minus letter grades (93-100%=A, 90-92%=A-, 87-89%=B+, 83-86%=B, 80-82%=B-, 77-79%=C+, 70-76%=C, 67-69%=D+, 63-66%=D, 60-62%=D-, and below 60%=F). The instructor reserves the right to make the brackets of this scale wider. An incomplete will be given due to extreme circumstances beyond your control (you will need to provide verifiable proof). After the drop date, students who do not wish to continue with the course will be responsible for withdrawing themselves. If a student chooses to stop participating in the course after the withdrawal deadline, this will result in a grade of F. Grades of no basis will not be awarded for lack of attendance after the withdrawal deadline.

Faculty Initiated Withdrawal

Attendance will be taken daily. As this is a 12 week course (as opposed to 15 weeks during normal spring/summer semesters), attendance is vitally important. **Students who miss more than 3 days of class may be withdrawn from the course.**

WebAssign Homework

Daily homework will be assigned using WebAssign. This is a great system for providing immediate feedback. You will learn best if you practice the material that has been discussed in class immediately after learning it. Homework will be due the following (class) day after a lesson is taught at midnight. For example, if a lesson is taught on Tuesday, the WebAssign problems for that lesson would be due on Wednesday by 11:59 PM — if a lesson is taught on Thursday, the WebAssign problems for that lesson would be due on Monday by 11:59 PM. Starting early ensures that the instructor will have adequate time to respond to any questions. The instructor may often be out of e-mail contact on weekends. Alternatively, utilize the resources in the MathLab to get more immediate help!
You will usually have 5 chances to get a problem correct. The point of these problems is to practice and learn from your mistakes. Use the multiple chances to do so! Late WebAssign homework will be accepted for 1/2 credit within one week of the original due date. The late penalty is only assessed on the problems which are incomplete or incorrect. For example, if you have a 60% on an assignment and the due date passes, you can work on the remaining 40% and earn a maximum grade of 80%.

We are going to access WebAssign directly from Blackboard. To do so your browser must be configured to accept third-party cookies. If you are having technical troubles contact OIT (https://www.alaska.edu/oit/) or WebAssign directly (https://webassign.com/support/student-support/).

Here are the steps to access WebAssign from Blackboard.

- Log in to Blackboard.
- Click on the Courses tab.
- Click on our course, Math 252X.
- In the course menu, click Tools.
- Click Access WebAssign.

The first time you access WebAssign from Blackboard, a new linked WebAssign account is automatically created for you. If you already have an account you may have to contact WebAssign’s student tech support to link your accounts. If you are having trouble with WebAssign, please let your instructor know and contact WebAssign’s student tech support. (https://webassign.com/support/student-support/)

WebAssign gives you free access for two week after the start of class. To continue using WebAssign after that either enter an access code or purchase access online. Failure to purchase a WebAssign code in a timely fashion is not a reason for a full credit extension on your homework. Buy your codes right away!

You must maintain a 70% average in WebAssign. If you do not maintain a 70% average, you may be withdrawn from the class.

Suggested Problems

There will be suggested, optional problems from the text given at the end of every lesson. If you find yourself struggling, the only way to get better is to practice. The suggested problems will be odd-numbered problems. The answers can be found in the back of the text and most have fully worked solutions on-line. If you wish to do so, a student solutions manual that contains fully worked solutions to all of these problems could be purchased.

Weekly Written Homework

Written homework give you a chance to tackle more challenging and interesting problems and practice writing up nice solutions. Homework will be due on Mondays at the beginning class when you walk in the door. The turn in day may be changed due to the exam schedule. This weekly assignment will be accepted one day late with a 5-point penalty. In the event that you must submit your homework late, it is your responsibility to deliver the quiz to your instructor's box in Chapman 101 before the next class or at the beginning of the next class. Note, a quiz is considered late when it is turned in after class begins.

All homeworks are open book, open notes, and you may use a calculator. You must show all relevant work, and at the discretion of the grader (that’s me!!), points will be deducted if steps are skipped. (For example, if you work a problem in a manner that was not discussed in class, but appears when you select “show work” on Wolfram Alpha, no credit will be given!)

Your solutions should be nice, neat solutions. Points will be deducted for sloppiness. The quiz that you submit should be your final draft! It is best to first work the problems on scratch paper and then rewrite the solution onto the handout. The following is a great template for writing (e.g.) solutions to integration problems. Note I will demonstrate this organization for virtually every problem in this class.
Compute the following definite integral.

1) \[\int_{\pi/4}^{\pi/2} \cot x \, dx = \int_{0}^{\pi/4} \frac{\cos x}{\sin x} \, dx \]

\[\left(\begin{array}{l} u = \sin x \\ du = \cos x \, dx \end{array} \right) \]
\[= \int_{1}^{\sqrt{2}/2} \frac{du}{u} \]
\[= \ln |u| \bigg|_{1}^{\sqrt{2}/2} \]
\[= \ln(1) - \ln \left(\frac{\sqrt{2}}{2} \right) = \ln \sqrt{2} \]

Besides outlining the general organization strategy of working \textit{vertically}, this example demonstrates how to write solutions that have two separate computational threads. The main work is connected through the string of equals signs; there is a side work computation - \(u \)-substitution in \(\dagger \). We will have “side work” for most integrals we compute in this class; this work generally needs to be separate (to the left or right) of the main solution to the problem. If the work is too long to be completed in a single column, you may start a next step in a new column.

Compute the following definite integral.

1) \[\int_{0}^{\pi/4} \tan x \, dx = \int_{0}^{\pi/4} \frac{\sin x}{\cos x} \, dx = \ln |u| \bigg|_{1}^{\sqrt{2}/2} \]

\[\left(\begin{array}{l} u = \cos x \\ du = - \sin x \, dx \end{array} \right) \]
\[= - \int_{1}^{\sqrt{2}/2} \frac{du}{u} \]
\[= \ln(1) - \ln \left(\frac{\sqrt{2}}{2} \right) = \ln \sqrt{2} \]

Remember, if you cannot go back to track a mistake, your work needs better organization.

\textbf{In-Class Quizzes}

There will be a 30 minute quiz each Monday\(^1\) based on the written homework due that day. This will take place at the end of the class (the last half hour).

\textbf{Exams}

We will have three midterm exams and a final in this course. The midterms will be 1.5 hours, i.e. the normal class duration. The final exam is cumulative. Exams will be closed book/closed notes and no calculator allowed. For the final, a large standard size note card (front and back) may be used for formulas, etc. The final exam will be 2 hours on the last day of class. We will make arrangements early in the semester to extend the last day to accommodate the lengthier exam.

\(^1\)with a few exceptions - see the Course Calendar for specific dates
Exam Make-Up Policy

Exams cannot be made up unless you provide a convincing reason and let your instructor know at least one class day in advance. If you have an unplanned emergency (such as a car accident or emergency medical situation) you must let your instructor know immediately. It is the Departments of Mathematics and Statistics policy that final exams cannot be given early or late.

Tutoring

Important Dates to Remember

See http://catalog.uaf.edu/calendar/ for a more detailed description of these dates.

<table>
<thead>
<tr>
<th>Important Date</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day of instruction</td>
<td>Monday, May 20</td>
</tr>
<tr>
<td>Deadline to register for full session; attendance required</td>
<td></td>
</tr>
<tr>
<td>Deadline for refund of tuition and fees</td>
<td></td>
</tr>
<tr>
<td>Last day for student- and faculty-initiated withdrawal</td>
<td></td>
</tr>
<tr>
<td>Last day of instruction including finals</td>
<td>Friday, Aug. 9</td>
</tr>
</tbody>
</table>

Course Calendar

Here is a tentative schedule of the topics we will cover during the coming weeks. If necessary, changes to this schedule will be announced via Blackboard and class.

Calendar to be determined.

Support Services

In addition to the MathLab, Student Support Services offers free tutoring (in many subjects) to students that qualify for their program. ASUAF offers private tutoring for a small fee (based on student income).

Disability Services

The Office of Disability Services implements the Americans with Disabilities Act (ADA), and ensures that UAF students have equal access to the campus and course materials. I will work with the Office of Disability Services (208 Whitaker, 474-5655) to provide reasonable accommodations to students with disabilities.

Student Protections and Services

Every qualified student is welcome in my classroom. As needed, I am happy to work with you, disability services, veterans’ services, rural student services, etc to find reasonable accommodations. Students at this university are protected against sexual harassment and discrimination (Title IX), and minors have additional protections. As required, if I notice or am informed of certain types of misconduct, then I am required to report it to the appropriate authorities. For more information on your rights as a student and the resources available to you, please go to the following site: https://cms-test.alaska.edu/handbook/.

DMS Academic Policies

1. Incomplete Grade Incomplete (I) will only be given in Computer Science, Mathematics or Statistics courses in cases where the student has completed the majority (normally all but the last three weeks) of a course with a grade of C or
better, but for personal reasons beyond his/her control has been unable to complete the course during the regular term. Negligence or indifference are not acceptable reasons for the granting of an incomplete grade.

2. *Late Withdrawals* A withdrawal after the deadline (currently 7 weeks into the semester for full summer session) from a DMS course will normally be granted only in cases where the student is performing satisfactorily (i.e., C or better) in a course, but has exceptional reasons, beyond his/her control, for being unable to complete the course. These exceptional reasons should be detailed in writing to the instructor, department head and dean.

3. *No Early Final Examinations* Final examinations for DMS courses shall not be held earlier than the date and time published in the official term schedule. Normally, a student will not be allowed to take a final exam early. Exceptions can be made by individual instructors, but should only be allowed in exceptional circumstances and in a manner which doesn’t endanger the security of the exam.