Course Information:

PHYS 627: Advanced Plasma Physics, 3 credits, Spring 2020
Meeting Times: Tues, Thurs 9:45-11:15
Meeting Location: Reichardt 138

Instructor Information:

Instructor: Peter Delamere, Professor of Space Physics
Office: 708E Elvey (Geophysical Institute)
Email: padelamere@alaska.edu
Phone: (907) 474-6442
Office Hours: by appointment

Prerequisites: Fundamentals of Plasma Physics (PHYS626), experience in programming, or permission of the instructor.

Course Description: Plasma physics is the study of ionized and partially ionized gases and their collective interaction with electromagnetic fields. The dynamics of a plasma requires a self-consistent solution of the particle dynamics and the electromagnetic field equations. The objective of this course is to systematically develop analytical tools for understanding plasma physics. Specifically, we will start with kinetic plasma theory waves and instabilities, take a closer look at MHD equilibria/discontinuities and MHD instabilities, and explore nonlinear plasma waves and turbulence. The goal is to provide an advanced survey of plasma physics. The specific topics that will be covered (not necessarily in order) are:

- Vlasov Equation/Waves
- Bernstein Waves
- Kinetic/inertial Alfvén waves
- Pressure anisotropy (EMIC waves, Mirror modes, Firehose instability)
- Multi-species plasma waves/instabilities (e.g., two-stream, Farley-Buneman, bi-ion waves, EMIC waves)
- Mode conversion
- Fluid Instabilities, (Kelvin-Helmholtz, Rayleigh-Taylor, Sausage, Kink)
- MHD Equilibria, entropy
- Reconnection, tearing instability
- Radio waves, maser instability
- Nonlinear plasma physics/turbulence.

Approach: The course will revisit topics from “Fundamentals of Plasma Physics” (PHYS626), providing a more detailed understanding for students pursuing research in plasma physics and/or space plasma physics. Roughly half of the course will follow a standard lecture/homework format, with the remaining half geared toward developing basic research skills and inquiry. The latter will involve researching the literature when textbooks are insufficient as well as conducting a semester research project.

Student learning outcomes: Upon completion of this course, students should be able to:

- Understand plasmas from both kinetic and fluid approaches.
- Assess plasma stability.
• Identify all kinetic/fluid waves and instabilities.
• Evaluate conditions associated with turbulence and other nonlinear aspects of plasmas.
• Research the literature effectively and with confidence.

Semester Projects: The semester project will require research based on scientific articles in space or laboratory plasma physics. The project can be analytical and/or numerical, but must follow a focused science question. Research topics must be selected by **March 3, 2020**. More ambitious projects can be tackled by groups of 2 or 3 students. An in-class presentation (15 minutes per person) will be made during class on April 21 and 23. Written reports will be due on April 23 (5-10 pages per person). Due to the math-intensive nature of the course, students are encouraged to typeset the reports in \LaTeX.

Textbook: There is no textbook requirement for this course. But the following textbooks are highly recommended:

Programming languages: Students are welcome to submit programming solutions in the language of their choice. Recommended languages for this course are Matlab, IDL, and Python.

Typesetting: Students are encouraged to typeset semester projects and selected homework problems in \LaTeX.

Grading:

- Homework 30%
- Midterm Exam 15%
- Project 30%
- Final Exam 25%

Letter grades will be evaluated on a curve; however, to satisfy university requirements, above 95% will be at least an A, above 85% will be at least a B above 75% will be at least a C, above 65% will be at least a D (in most cases the actual curve is significantly lower!).

Course Policies:

(a) Attendance and participation in class is expected of all students.
(b) Assignments are due at the beginning of class on the due date.
(c) Students are encouraged to work together on homework problems, but the final written solutions must be individual work.
(d) Students must acknowledge all sources of information – including fellow students – used in homework solutions and final projects. The UAF catalog states: “The university may initiate disciplinary action and impose disciplinary sanctions against any student or student organization found responsible for committing, attempting to commit or intentionally assisting in the commission of . . . cheating, plagiarism, or other forms of academic dishonesty. . . “

(e) All UA student academics and regulations are adhered to in this course. You may find these in the UAF catalog (section “Academics and Regulations”).

Student protection and services statement:

(a) Every qualified student is welcome in my classroom. As needed, I am happy to work with you, disability services, veterans’ services, rural student services, etc to find reasonable accommodations. Students at this university are protected against sexual harassment and discrimination (Title IX), and minors have additional protections. As required, if I notice or am informed of certain types of misconduct, then I am required to report it to the appropriate authorities. For more information on your rights as a student and the resources available to you to resolve problems, please go the following site: www.uaf.edu/handbook/

(b) The University of Alaska Fairbanks is an AA/EO employer and educational institution and prohibits illegal discrimination against any individual: https://alaska.edu/nondiscrimination/.

(c) The University of Alaska Fairbanks is committed to equal opportunity for students with disabilities. Students with disabilities are encouraged to contact the coordinator of Disability Services at the Center for Health & Counseling (x7043).

(d) Your instructor follows the University of Alaska Fairbanks Incomplete Grade Policy: “The letter “I” (Incomplete) is a temporary grade used to indicate that the student has satisfactorily completed (C or better) the majority of work in a course but for personal reasons beyond the student’s control, such as sickness, has not been able to complete the course during the regular semester. Negligence or indifference are not acceptable reasons for an “I” grade.”

(e) Effective communication: Students who have difficulties with oral presentations and/or writing are strongly encouraged to get help from the UAF Department of Communication’s Speaking Center (907-474-5470, speak@uaf.edu) and the UAF English Department’s Writing Center (907-474-5314, Gruening 8th floor), and/or CTC’s Learning Center (604 Barnette Street, 907-455-2860).

Tentative Schedule:
<table>
<thead>
<tr>
<th>Topic</th>
<th>Week</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review</td>
<td>1</td>
<td>Jan 14, 16</td>
</tr>
<tr>
<td>Vlasov Equation</td>
<td>2</td>
<td>Jan 21, 23</td>
</tr>
<tr>
<td>Kinetic waves/instabilities</td>
<td>3</td>
<td>Jan 28, 30</td>
</tr>
<tr>
<td>Kinetic/inertial Alfvén waves</td>
<td>4</td>
<td>Feb 4, 6</td>
</tr>
<tr>
<td>Pressure anisotropy (waves/instabilities)</td>
<td>5</td>
<td>Feb 11, 13</td>
</tr>
<tr>
<td>Multi-species plasma waves</td>
<td>6</td>
<td>Feb 18, 20</td>
</tr>
<tr>
<td>Mode conversion + Review</td>
<td>7</td>
<td>Feb 27, March 1</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>8</td>
<td>Mar 3</td>
</tr>
<tr>
<td>Fluid instabilities</td>
<td>8</td>
<td>Mar 5</td>
</tr>
<tr>
<td>Spring break–no class</td>
<td>9</td>
<td>Mar 10, 12</td>
</tr>
<tr>
<td>MHD Equilibria</td>
<td>10</td>
<td>Mar 17, 19</td>
</tr>
<tr>
<td>Reconnection</td>
<td>11</td>
<td>Mar 24, 26</td>
</tr>
<tr>
<td>Reconnection</td>
<td>12</td>
<td>April 31, Mar 2</td>
</tr>
<tr>
<td>Radio Waves</td>
<td>13</td>
<td>April 7, 9</td>
</tr>
<tr>
<td>Nonlinear plasma physics/turbulence</td>
<td>14</td>
<td>April 14, 16</td>
</tr>
<tr>
<td>Review + In-class presentations</td>
<td>15</td>
<td>April 21, 23</td>
</tr>
<tr>
<td>Final exam</td>
<td>16</td>
<td>8-10 a.m., Tuesday, April 28</td>
</tr>
</tbody>
</table>