Atmospheric Radiation - Fall 2019

ATM F613/F413; PHYS F613/413 Atmospheric Radiation (3)

Instructor: Xiangdong Zhang xzhang9@alaska.edu
313 Akasofu (907) 474-2675

Class: Tuesday and Thursday, 2:30 pm - 4:00pm, 230 Margaret Murie Building
Office Hours: Friday 9 - 11 am 313 Akasofu, or by appointment.

Required Text

A first course in atmospheric radiation

Recommended Texts on Reserve at Mather Library:

Fundamentals of atmospheric radiation: an introduction with 400 problems

Absorption and scattering of light by small particles

Light scattering by small particles

An introduction to atmospheric radiation

Radiative processes in meteorology and climatology

Description

This course meets core requirements for Atmospheric Science M.S. and Ph.D. degrees. However, interested students from other areas of science and engineering are welcome. Course will follow elements from recommended text and review articles. Grades will be based on homework, exams and a term paper-project. This class focuses on the fundamental study and quantitative measurement of the interactions of solar and terrestrial radiation with molecules, aerosols and cloud particles in planetary atmospheres. The goal of the course is to give students a foundation in the principles of atmospheric radiation. Lectures will include material not found in the texts. Where possible we will try to explore concepts from a data driven perspective. The topics to be covered include:

1. Introduction and overview of Earth's radiation budget and balance
2. Principles and practices of describing radiation
3. The Sun and solar radiation.
4. Long-wave radiation
5. Radiative Transfer
6. Aerosols and clouds
7. Radiation and observed atmospheric thermal structure

Students completing the course should have an understanding of the key concepts in the interaction of radiation with the atmosphere. They should have developed a foundation for research in atmospheric sciences, geography, environmental sciences and remote sensing.
Grading
The class grade will be based on homework, final exam, a term paper-project, and participation as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>30%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Term Paper-Project</td>
<td>35%</td>
</tr>
<tr>
<td>Participation</td>
<td>5%</td>
</tr>
</tbody>
</table>

Grades will be assigned in accordance with UAF policy (see current catalog). A student who scores greater than 95% on their submitted body of work is guaranteed an A+. A student who scores greater than 90% on their submitted body of work is guaranteed an A-. A student who scores greater than 82.5% on their submitted body of work is guaranteed a B+. A student who scores greater than 75% on their submitted body of work is guaranteed a B-. A student who scores greater than 67.5% on their submitted body of work is guaranteed a C+. A student who scores greater than 60% on their submitted body of work is guaranteed a C-. A student who scores greater than 55% on their submitted body of work is guaranteed a D+. A student who scores greater than 50% on their submitted body of work is guaranteed a D-.

Homework
Homework problems will be assigned bi-weekly and must be turned in on/before the stated deadline. No late homework will be accepted without a suitable excuse. You are encouraged to work in study groups. However, the work you hand in should be your own effort (not merely a copy of another student’s work). You are welcome to use the scheduled office hours for tutorial assistance with the homework. If you have questions about a homework problem outside of office hours, contact the instructor by e-mail. Homework assignments are expected to be neat and legible. Students are expected to complete the reading assignments.

Final Exam
There will be final exam. The exam will last 90 minutes. Students may refer to a single double-sided cheat-sheet (standard 8.5x11) in the exam.

Term Paper-Project
There will be a term paper-project required of each student based on a topic selected by the student. The paper should present a review of several (minimum of four) while the project can present a smaller number of research articles and conduct an analysis. The preparation of the term paper will be staged over the semester. An outline (~1 page) outlining the topic to be addressed, with list of possible papers, is due in October. A detailed outline citing the references to be used and giving a brief description of each paper and/or method is due in November. The instructor requires each student to meet with the instructor to discuss the paper project. The final paper-project report is due on the last class. Each student is required to make a PowerPoint® presentation with handout (15 min presentation, with 5 min for discussion) to the class. The grade for the paper-project will be based on both the paper and the presentation. Class members and the instructor will complete evaluation sheets for each presentation, and the grade for the presentation will be based on both the peer and instructor evaluations. Attendance and participation is mandatory in order to pass the class.

Participation
Participation is based on regular attendance, submitting a full body of work (i.e., attempting all homework assignments, reading assignments, exam, and term paper), participating in class discussion, and participating in the paper-project presentations and evaluations. Students are expected to come to class prepared, with assigned reading done.

ATM413 and ATM613
The same grading scheme will be applied for ATM413 and ATM613. Students taking ATM415 and ATM615 are expected and encouraged to participate equally in classroom discussion. However, the scope and demand of the assignments differs. Students taking ATM413 are required to review one research article (rather than a term paper based on multiple papers) for the term paper. The homework assignments for ATM413 will have fewer problems and less extensive problems than those assigned for ATM613. ATM413 students may attempt the
extra ATM613 problems for extra credit. The exam for ATM413 and ATM613 will draw on the class assignments and therefore differ accordingly.

Students with Disabilities
The instructor will work with the UAF Disability Services Program (http://www.uaf.edu/disability/) to accommodate students with disabilities. Please inform the instructor on the first day of classes if you are seeking an accommodation through Disability Services.

Attendance
Class attendance is mandatory in accordance with UAF student services and responsibilities (http://www.uaf.edu/schedule/services/). Material not in the text may be introduced at random intervals. If you miss a class, extras of handouts are available outside the instructor's office. Students who miss class without prior-explanation or appropriate excuse (i.e., personal emergency) will receive a lower participation grade. Students will be expected for one or two meetings outside of scheduled class time to meet with the instructor to discuss their term papers. Students traveling to attend scientific meetings should inform the instructor on the first day of class. Classes may be rescheduled as appropriate to accommodate these important events.

e-Access
Class will use Blackboard http://classes.uaf.edu/ and course materials will be uploaded to Blackboard.

Academic Honesty and Plagiarism
You are expected to do your own work in accordance with the UAF Student Code of Conduct (http://www.uaf.edu/schedule/conduct/#code). Cheating and plagiarism are very serious offenses, and will not be tolerated. Plagiarism may be defined as using what another person's work and presenting it as your own. Plagiarism is never acceptable. Any exam or homework that contains plagiarized material will receive a grade of zero for that exam or homework. A repeated offense may result in formal disciplinary action by the University.

Notes and Questions

ATM613/413; PHYS613/413

Fall 2019
<table>
<thead>
<tr>
<th>Topic</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Atmospheric Radiation: An Overview</td>
<td>Properties of Radiation</td>
</tr>
<tr>
<td>Properties of Radiation (Cont.) HW#1 assigned</td>
<td>Thermodynamic Equilibrium and Blackbody Radiation</td>
</tr>
<tr>
<td>Absorption and Emission in the Atmosphere</td>
<td>Absorption, Emission, and Scattering in the Atmosphere</td>
</tr>
<tr>
<td>Extinction, Absorption, Scattering and Radiative Transfer in the Atmosphere HW#2 assigned</td>
<td>Radiative Transfer in the Atmosphere</td>
</tr>
<tr>
<td>Review of Homework #1</td>
<td>Property of Molecules and Particles in the Atmosphere Radiation</td>
</tr>
<tr>
<td>Mid-term Review</td>
<td>Review of Homework #2</td>
</tr>
<tr>
<td>Paper-Project Meeting</td>
<td>Property of Molecules and Particles in the Atmosphere Radiation</td>
</tr>
<tr>
<td>Absorption and Emission of Atoms and Molecules</td>
<td>Absorption and Emission of Atoms and Molecules (Continuing)</td>
</tr>
<tr>
<td>Spectral line of Gaseous Absorption and Emission HW#3 assigned</td>
<td>Spectral line of Gaseous Absorption and Emission (Continuing)</td>
</tr>
<tr>
<td>Terrestrial Infrared Radiative Transfer</td>
<td>Terrestrial Infrared Radiative Transfer (Continuation 1)</td>
</tr>
<tr>
<td>Review of HW#3</td>
<td>Terrestrial Infrared Radiative Transfer (Continuation 2)</td>
</tr>
<tr>
<td>Pre-Exam Review</td>
<td>Exam</td>
</tr>
<tr>
<td>Review of Exam</td>
<td>Thanksgiving - No Class</td>
</tr>
<tr>
<td>Radiative Transfer Model</td>
<td>Radiative Transfer Model (Continuing)</td>
</tr>
<tr>
<td>Presentations</td>
<td>Presentations</td>
</tr>
<tr>
<td>Last Class</td>
<td></td>
</tr>
</tbody>
</table>