

Preparing physics students for 21st-CENTURY CAREERS

Laurie McNeil

 and Paula HeronWhether they end up in industrial, governmental, business, or academic settings, college graduates need plenty of skills beyond an ability to solve problem sets.

I
f you are a physics professor, you probably followed the traditional path to get where you are: undergraduate and graduate degrees in physics, one or more postdoctoral positions, and then a faculty position. Perhaps you think most of the physics majors you now teach will follow in your footsteps and that you best serve them by preparing them to become physics professors. If so, you are mistaken.

According to data from the Statistical Research Center of the merican Institute of Physics (AIP.; publisher of PHYSICS ToDAY) only about 5% of US physics bachelor's degree graduates end p employed as physics professors - though others may pursur academic careers in related fields, such as engineering or conputer science. The vast majority of physics bachelor's degree recipients are employed outside academia for at least part, and half of which are in the private sector. (Figure 1 illustrates th data on recent graduates' initial employment.)
Few physics programs are explicitly designed to prepare
students for that likely career outcome Both physics graduates and their empoth physics graduates and their employers report that graduates should
be better prepared for positions re quiring scientific training. That observation is equally applicable for physics PhD holders (see PHYSICS ToDAY, June 1995, page 13). Almost half of them hold positions outside academia one
year after receiving their degrees, and year after receiving their degrees, an
more of them move to private-sector government positions after completing a postdoc. When surveyed, physics graduates working in the private sector report that they regularly need to use skills beyond their knowledge of physics; figure 2 presents the data. Working in teams, technical writing, programming, applying physics to interdisciplinary problems, designing and developing products, and managing complex projects are all acquired skills. But for most ucational experience. In 2014 the American Physical Society (APS) and the Amer ican Association of Physics Teachers (AAPT) convened a joir

21st-CENTURY CAREERS

FIGURE 1. THE PRIVATE SECTOR employs 65% of physics bachelors who entered the workforce after receiving their degrees, according to a survey of graduates from 2013 and 2014. (This chart does not include the 54% of all degree recipients who entered graduate school immediately.) College and university employment refers primarily to staff, not faculty, positions. "Other" employment includes elementary and middle schools, hospitals and other medical facilities, and nonprofit organizations. In the private sector, the graduates are primarily employed in STEM (science, technology, engineering, and mathematics) jobs, though a significant fraction are employed in non-STEM fields,
such as finance and the service industry. (Adapted from ref. 4.) such as finance and the service industry. (Adapted from ref. 4.)
task force on undergraduate physics programs (J-TUPP) to address that shortconing. We and our colleagues on J-TUPP physics communities, were asked two broad questions: What skills and knowledge should the next generation of undergraduate physics degree holders possess to be well prepared for a diverse set of careers? And how might physics departments revise their undergraduate programs to help students? Our report is now available. ${ }^{1}$
To develonsulted several resources to answer those questions. To develop a clear picture of what, ideally, a physics graduate
should know to be successful in a wide range of careers, we studied the findings of other academic societies, education associations, and business and government groups; conducted interviews with, among others, physicists in nonacademic careers and developers of innovative university programs; and commissioned a study of physics graduates and their employers. We also drew heavily from previous work, such as the Casearch Center and the Society of Physics Students, ${ }^{2}$ and commissioned a set of case studies of departments that have modified their programs to enhance graduates' career readiness in order to find examples of strategies that other departments could adopt.
What do physics graduates need?
We concluded that physics graduates are generally already prepared to pursue many careers and are sought for their flex
ibility, problem-solving skills, and exposure to a range of technologies. But most would benefit from a wider and deeper
40 PHYSICS TODAY I NOVEMBER 2017
knowledge of computational-analysis tools, particularly in austry-standard packages; a broader set of experiences, such with industrial work; and a closer connection among physics with industrial work; and a closer connection among physics
content, applications, and innovation. Graduates would also content, applications, and innovation. Graduates would also physics program included basic business concepts and professional skills such as teamwork and effective communication. Faculty members have traditionally focused on ensuring that students master the fundamental physics concepts of the core curriculum- mechanics, electricity and magnetism, ther-
modynamics and statistical mechanics, quantum mechanicsand their application in areas such as optics, nuclear physics, and condensed-matter physics. Students also gain skills in numerical, analytical, and experimental methods while studying those subjects. It is less common, however, for them to pick up skills associated with applying fundamental physics in interdisciplinary contexts and in the wide variety of nonacademi career settings they are likely to encounter.
portunities to acquire scientific and technicall by prill providing essarily specific to physics - for example, problem solving beyond the typical problem sets needed to master basic concepts; generic experimental skills in optics, vacuum technology, and electronics; coding and software use; data processing, acquisition, and analysis; and troubleshooting, calibrating, and repairing equipment. Some aspects of those skills are components of without an explicit goal of inculcating such skills and develop, ing specific activities to achieve it, some students may fall
through the cracks. Perhaps equally problematic, they may fail to recognize the marketable skills they actually have acquired and which employment opportunities suit them best. Interesthigh school physics teacher-includes the word physics. When a physics graduate enters the workplace (or, for that matter, undertakes a dissertation project), she is likely to face the challenge of solving complex, ambiguous problems in real-
world contexts. She will need to define and formulate specific questions, perform literature searches, and understand what she discovers well enough to develop a strategy for answering her questions - whether by conducting experiments, performing a simulation, making an analytical model, or taking countless other approaches. To implement the strategy, she will need to identify resource needs and make decisions or recommendations for beginning or continuing a project, determine the ap-
propriate next steps, and place the results in a broad perspective. It is likely she will have had little experience doing such tasks unless her undergraduate program offered the opportunity to develop the needed skills.
Competency in instrumentation, software, computation, and data analysis is vital to success in key parts of the workplace or dissertation challenge. A recent report by the AAP Undergraduate Curriculum Task Force contains useful recom dergraduate programs ${ }^{3}$ Computational software packages are widely used in the private sector, and many are available in an educational version at little or no cost. Although the student versions may lack some functions found in full-price ones, they suffice as an introduction. The graduates we interviewed were virtually unanimous in their desire for more programming skills. Competency in analyzing data, distinguishing between models, and presenting results is important in many Careers pursued by physics graduates, tion from their college programs puts graduates at a disadvantage compared with their engineering-major peers, who are more likely to have had such experience.
Members of the broader physics need for good communication skills. But too often a physics program focus primarily on the preparation of ref ereed publications. A physicist in an industrial or government setting is likely to need the ability to make her ideas and results accessible to people untrained in science, including manmarketing personnel, technicians, and members of the public. The graduate will also need to articulate her understanding and be persuasive in commu nicating the worth of her and others ideas using words, equations, tables diagrams, pictures, animations, and need to teach a complex idea or metho
to others, evaluate how well it was absorbed, and develop a strategy to more effectively communicate the idea. But most physics programs include no specific opportunities to develop such skills, even for students who coauthor scientific publicaons and present their research at professional conferences. Mor way They programs also shortchange their students in another way: They rarely help them learn about career opportunities in physics, how to find a job, or how to assess the relevance
of their skill set to that job. That many physics faculty members are only vaguely aware of careers outside academia makes their students' transition to the workforce doubly challenging.

What can physics programs do?

The long list of skills and knowledge that physics graduates need may seem daunting to both students and faculty members. How can a program provide a student with all that career preparation and yet still make sure she can solve Schrodinger's through more than one channel. Depending on such factors as an institution's human and financial resources, the size and aspirations of its student body, and the existence of local industries, physics departments can choose different strategies. They may redesign their programs entirely, infuse skill development into already existing courses, or build the skills primarily with cocurricular activities. In the J-TUPP report, we provide many
examples of approaches that have been adopted by physics departments. ${ }^{1}$ (For an earlier account of approaches and innovations made by departments to prepare their students for various job opportunities, see the article by Barrett Ripin, PHYSICs ToDAY, April 2001, page 43.)

Most faculty members will think that their standard courses already provide a firm foundation of physics knowledge, and rightly so. But why stop there? The content of virtually any

Knowledge and skills regularly used by physics bachelors

on daily, weekly, or monthly, physics graduates from 2013 and 2014 now working at privatesector jobs in engineering or computer science cited the broad range listed here. Graduates in used more regularly-than a knowledge of physics. (Adapted from ref 4)) more precisely

Application enginees
Middle school science teacher Systems analyst
Mechanical engineer Design engineer
Wen developer ${ }^{\text {ㄴ․․ }}$. High school physics teacher
Field engineer
Accelerator operator
ST consultant 흘
:를
를
.
" IT consultant

Software engineer

Process engineer Physical sciences technician Manufacturing engineer

Programmer

 Research technicianFIGURE 3. COMMON JOB TITLES reported by physics bachelors from the classes of 2009 and 2010 . (Adapted from the careers
toollbox for undergraduate physics students, AIP Career Pathways Project, www.spsnationali.org/careerstoolbox.)
physics course can be related to career-relevant applications while maintaining a focus on fundamentals. Even general relativity finds a practical use-in GPS technology. Physical principles can be applied to industrial processes or commercial devices, say, without sacrificing an appreciation of the core fundamentals. As mentioned earlier, commercial products can dents with industry-standard software packages. Students' communication skills can be addres points in a curriculum. For example, students may produce oral reports on topics relevant to a course or as part of a seminar. Or they may give presentations on their research to the public - perhaps as part of outreach efforts. And not all skill development needs to take place in the physics department. Writing and editing skills can be cultivated in English or communications departments. Basic business concepts can be in business schools. Career-placement offices on campus can partner with physics departments to help students conduct a successful job search by honing their resumé-writing and interview skills.
Cocurricular activities are often overlooked as opportunities to develop professional skills. Departments can host talks and other events that feature physics graduates in diverse ca-
reers. They can support student organizations in industrial site visits and educational outreach activities. And they can encourage students to take advantage of development activities offered at conferences sponsored by national professional organizations such as the AIP member societies. Formal opportunities to teach or tutor others are yet another way to help students
without expanding the physics major.

Collaborations and a flexible curriculum A department that is prepared to make significant changes can collaborate with other departments and offices on campus, 42 PHYSICS TODAY I NOVEMBER 2017
can be designed around specific applications that involve in portant physics concepts. A course focused on solar cell for instance, could encompass quantum mechanics, therma physics, solid-state physics, and more. And a course designed around the challenges and solutions associated with clean energy, clean water, and the environment could offer a broad per spective on the use of physics to solve societal problems.
career preparation is a capstone activity: a thesis, senior semi nar, or some other relevant experience. Often students will in tern in a research laboratory, conduct research on a historical scientific breakthrough, or carry out an experiment of their own under faculty guidance - and write up the work in each case. The activities can be tailored to address one or more of the learning goals we have mentioned in this article or in some cases can even incorporate industry-standard skills-commercia design-as part of the project.

What's in it for the department

Even the most minor changes that are made to enhance graduates' career preparedness require sustained effort by faculty members. What would be the reward for you and your department? First, if you investigate the employment outcomes of prospects of your current and future students, you will better know your students and be able to help them achieve their ful potential after graduation. Second, adopting career-preparednes strategies will enhance your department's reputation and at tract a talented and diverse group of students who might oth erwise have chosen different disciplines or other institutions. Third, enhancing your students' engagement with applied reFinally those relatively few students who goto graduate school will have developed skills that are as useful in a research group as they are in the workforce
Ultimately, we believe that you and your department should follow our recommendations because you desire two things. One is to prepare 21st-century graduates as effectively as pos ible for the diverse careers they can be expected to have. Th other is that your department obtain the many benefits that
will follow from fulfiling the first desire - in other words, to pursue enlightened self-interest. If enough of you choose to follow the suggestions, we are confident that the discipline of physics will continue in robust health through this century and beyond

REFERECCES

. Joint Task Force on Undergraduate Physics Programs, Phys 21 ical Society (October 2016).
2. R. Czuiko, K. Redmond, T. Sauncy, T. Olsen, Equipping Physics Ma Pathways Proiect (December 2014) See Sure Students, "AIP Career Pathways Project," www.spsnational.org /career-resources/carcer-pathways.
3. AAPT Undergraduate Curriculum Task Force, AAPT Recommendations for Computational Physics in the Undergraduate Physics Cur-
riculum, American Association of Physics Teachers (October 2016 4. P. Mulvey, J. Pold, Physicis Bachelors: Intitial Employment, America NOVEMBER 2017 I PHYSICS TODAY 43

NEW LT-SPM \& XPS
Instruments for
Surface Analysis

POLAR

Bath Cryostat UHV SPM
STM, qPlus ${ }^{\oplus}$-AFM \& Spectroscop Integrated TRIBUS Head Helium Holding Time: >200h Minimium Temp: $\mathrm{T}_{\text {MIs }}<5 \mathrm{~K}$ Superconducting Magnet Optical Access

PULSE

For Dynamic XPS

XPS, UPS, AES, ISS
Ultra-fast XPS >3 Mcps High Sensitivity ASPECT Analyser
Snapshot Narrow Spectrum NEO Control Suite

Helping our customers deliver the right results for their research requirements. Come and talk to us at the MRS Fall Meeting, Boston, Massachusetts, USA - booth 622

Designed for Unrivalled Performance
sales@mantis-sigma.com
www.sigma-surface-science.com
ESIGMASurfae Science

