Build A Model Solar Probe

Discover the Parker Solar Probe and embark on a mission to the Sun!

People can’t travel to the Sun because it is too hot, but we can send a spacecraft called a solar probe! Our solar probe will have tools to tell us about the Sun. Are you ready to build?

Materials Needed:

Instrument Shapes printable (or draw your own), toilet paper tube, thin cardboard (from a cereal box or similar packaging), glue, tape, scissors, aluminum foil, crayons.

Instructions:

Step 1: Color each instrument shape. Glue them to thin cardboard to make them sturdy, then cut each one out.

Step 2: Tape the solar panels to the straight edges of the protective shield. Tape or glue four of the long thin rectangular probes to the back of the protective shield, one on each corner (see pictures).

Step 3: Tape the protective shield on one edge of the tube. Tape the last long thin rectangle on the other end of the tube.

Step 4: Cover the tube in foil. This protects the electronic instruments from solar radiation.

Step 5: Glue or tape the rest of the instruments around the tube: the small rectangle is a telescope, and the hexagon and circle are instruments to measure the solar wind.

Step 6: Add more features to your solar probe! What do you wonder about the Sun? What mysteries will your probe explore?
Solar Probe Instrument Shapes Printable

These shapes represent just a few of the features and instruments on the Parker Solar Probe.

The **protective shield** protects the spacecraft from the heat of the Sun.

Solar panels absorb the Sun’s energy to power the spacecraft.

SWEAP instruments measure the solar wind.

The ISOIS instrument measures solar energy.

The WISPR telescopes take pictures of the sun’s corona.

The FIELDS probes measure magnetic and electric energy.

Discover more about the Parker Solar Probe: parkersolarprobe.jhuapl.edu

Artist’s conception of the Parker Solar Probe. Image: NASA.
Exploring The Sun From Far Away

The Sun (also called Sol) is the star at the center of our Solar System. Its gravity holds the solar system together. The Sun's warmth and light make life possible on Earth.

We have been always been curious to learn more about the Sun, the brightest object we can see from Earth. However, no one has ever traveled to the Sun. Instead, people have developed ways to explore the Sun from far away.

For thousands of years, people around the world have observed the Sun. They have used the Sun's movements and the changes in the amount of sunlight to keep track of times and seasons. Civilizations such as the Babylonians and Chinese recorded their observations of solar eclipses and sunspots. In 1612, the astronomer Galileo observed sunspots through a telescope. Since then, scientists have continued to develop new tools to help them explore the Sun.

In the 20th and 21st centuries, scientists have sent spacecraft to study the Sun close-up. In 1990, the Ulysses probe orbited the Sun three times. It helped determine that the Sun’s magnetic field reverses every 11 years. The Solar & Heliospheric Observatory (SOHO) was launched in 1995 and is still operating over 25 years later!

In 2018, NASA launched the Parker Solar Probe, which will travel far closer to the Sun than any other spacecraft. The Solar Orbiter, which launched in 2020, will investigate the heliosphere, a giant bubble of charged particles and magnetic fields blown outward by the Sun. Together the Solar Orbiter and the Parker Solar Probe will help us explore the Sun in more detail than ever before.

Follow the Solar Orbiter’s journey to the Sun: www.nasa.gov/solar-orbiter