TRIAL COURSE OR NEW COURSE PROPOSAL

(Attach copy of syllabus)

<table>
<thead>
<tr>
<th>Submitted by:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>Chemistry & Biochemistry</td>
<td>College/School</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Tom Green</td>
<td>Phone</td>
</tr>
<tr>
<td>Email Contact</td>
<td>tkgreen@alaska.edu</td>
<td>Faculty Contact</td>
</tr>
</tbody>
</table>

1. ACTION DESIRED

(CHECK ONE):

- [] Trial Course
- [] New Course

2. COURSE IDENTIFICATION:

- Dept: ___
- Chem: ___
- Course #: 494
- No. of Credits: 3

Justify upper/lower division status & number of credits:

This is an advanced course that builds on lower level chemistry and biochemistry courses

3. PROPOSED COURSE TITLE:

- Nutritional Biochemistry

4. To be CROSSLISTED?

- YES/NO

- If yes, Dept: ___
- Course #: ___

5. To be STACKED?

- YES/NO

- If yes, Dept: ___
- Course #: ___

How will the two course levels differ from each other? How will each be taught at the appropriate level?:

* Use only one Format 1 form for the stacked course (not one for each level of the course!) and attach syllabi. Stacked course applications are reviewed by the (Undergraduate) Curricular Review Committee and by the Graduate Academic and Advising Committee. Creating two different syllabi (undergraduate and graduate versions) will help emphasize the different qualities of what are supposed to be two different courses. The committees will determine: 1) whether the two versions are sufficiently different (i.e. if there undergraduate and graduate level content being offered); 2) are undergraduates being overtaxed? In this context, the committees are looking out for the interests of the students taking the course. Typically, if either committee has qualms, they both do. More info online – see URL at top of this page.

6. FREQUENCY OF OFFERING:

- Spring semesters

7. SEMESTER YEAR OF FIRST OFFERING

- Spring 2015 as trial course

- (offered previously as Special Topics Chem 493 in Spring 2014)

8. COURSE FORMAT:

NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the Core Review Committee.

- COURSE FORMAT: (check all that apply)
 - [] 1
 - [] 2
 - [] 3
 - [] 4
 - [] 5
 - [] 6 weeks to full semester

- OTHER FORMAT (specify)

- Mode of delivery (specify lecture, field trips, labs, etc)

- Lecture + lab (2.5+2)
9. CONTACTHOURS PER WEEK

<table>
<thead>
<tr>
<th>LECTURE</th>
<th>LAB</th>
<th>PRACTICUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 hours/weeks</td>
<td>2 hours/week</td>
<td></td>
</tr>
</tbody>
</table>

Note: # of credits are based on contact hours. 800 minutes of lecture=1 credit. 2400 minutes of lab in a science course=1 credit. 2400-8000 minutes of practical=1 credit. 2400-8000 minutes of internship=1 credit. This must match with the syllabus. See http://www.uaf.edu/uafpw/faculty-senate/curriculum/course-degree-procedures/guidelines-for-computing for more information on number of credits.

10. COMPLETE - CATALOG DESCRIPTION

Example of a complete description:

FISH 407W.O Fisheries Management
3 Credits Offered Spring
Theory and practice of fisheries management, with an emphasis on strategies utilized for the management of freshwater and marine fisheries. Prerequisites: COMM 131 or COMM F11X; ENGL 111X; ENGL 211X or ENGL 213X; ENGL 414X; ENGL 415 or permission of instructor. Crosslisted with NRM 407. (3+0)

CHEM 494 Nutritional Biochemistry
3 credits Offered Spring
This course integrates introductory concepts from chemistry and biochemistry in structuring research projects, using the resources and expertise available at UAF, to address nutritional inquiries relevant to Alaska or Native Health. Topics discussed will include components in Alaskan foods, such as phytoneutrients and omega 3 fatty acids as well as any health disparities that are affected by these compounds such as diabetes, cardiovascular disease and metabolic syndrome. The course is designed for the application of practical biochemical knowledge towards current nutritional issues, and at the same time acquiring and demonstrating biochemical skills. Prerequisite: CHEM F321 (2+2.5)

11. COURSE CLASSIFICATIONS

Undergraduate courses only. Consult with CLA Curriculum Council to apply S or H classification appropriately; otherwise leave fields blank.

<table>
<thead>
<tr>
<th>H = Humanities</th>
<th>S = Social Sciences</th>
</tr>
</thead>
</table>

Will this course be used to fulfill a requirement for the baccalaureate core? **YES**, **NO**: x

If YES, check which core requirements it could be used to fulfill:
- O = Oral Intensive, Format 6
- W = Writing Intensive, Format 7
- X = Baccalaureate Core

11.A SCOURSE CONTENT RELATED TO NORTHERN, ARCTIC OR CIRCUMPOLAR STUDIES? **YES**, **NO**: x

12. COURSE REPEATABILITY

Is this course repeatable for credit? **YES**, **NO**: x

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit? **TIMES**

If the course can be repeated for credit, what is the maximum number of credit hours that may be earned for this course? **CREDITS**

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? **CREDITS**

13. GRADING SYSTEM

Specific to course. Note: Changing the grading system for a course is the responsibility of the Major Course Chair. Format 2 form.

LETTER: x

PASS/FAIL: []
14. PREREQUISITES
Chem 321 Organic Chemistry I

These will be required before the student is allowed to enroll in the course.

15. SPECIAL RESTRICTIONS, CONDITIONS
No

16. PROPOSED COURSE FEES
$65.00
Has a memo been submitted through your dean to the Provost for fee approval? Yes/No
X (previously as special topics)

17. PREVIOUS HISTORY
Has the course been offered as special topics or trial course previously? Yes/No
Yes
If yes, give semester, year, course #, etc.: Special Topics, Chem 493 Nutritional Biochemistry, Spring 2014

18. ESTIMATED IMPACT
WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.
This class is expected to have a low initial enrollment and is being developed in hopes to become a new writing-intensive course for Chemistry. In such, in the future, the class will likely be capped at a low enrollment. The instructor (Kriya Dunlap) has sufficient space in her lab to accommodate the students for the laboratory portion of this course. Once a class time has been selected, WRRB 009 will be requested for classroom space. I have used this space in the past for Chem 674 and it is a state-of-the-art classroom, equipped with many technological advances that will serve this course well. In addition it is in the same building as the laboratory space.

19. LIBRARY COLLECTIONS
Have you contacted the library collection development officer (kljensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>x</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Journal articles are accessible online and through the library.

20. IMPACT ON PROGRAMS/DEPARTMENTS
What programs/Departments will be affected by this proposed action?
Include information on the Programs/Departments contacted (e.g., email, memo)

None, other than offer our Chemistry & Biochemistry students a nutritional biochemistry course relevant to many student’s interest. Space is available in Dunlap’s lab (see above).

21. POSITIVE AND NEGATIVE IMPACTS
Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.

No negative impacts. Course complements other existing Biochemistry courses (Chem F450 and F451).
The purpose of the department is to ensure that the new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

Besides providing a course on a current and engaging topic related to nutritional biochemistry, this course integrates concepts learned in previous courses into a "real world" learning experience. It supports UAF's strategic plan and its diversity goals by integrating traditional knowledge in the science educational experience. The goal is to create an increased sensitivity to different types of knowledge while learning the fundamentals of nutritional biochemistry. The eventual plan for this course, should it be successful, is for it to satisfy the writing intensive "W" criteria and possible become a capstone course. This is a trial run.

APPROVALS: Add additional signature lines as needed.

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td>9-18-14</td>
</tr>
<tr>
<td>Chemistry & Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td>9-24-14</td>
</tr>
<tr>
<td>CNSM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td>9/24/19</td>
</tr>
<tr>
<td>CNSM</td>
<td></td>
</tr>
</tbody>
</table>

Offerings above the level of approved programs must be approved in advance by the Provost.

<table>
<thead>
<tr>
<th>Signature of Provost (if above level of approved programs):</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

<table>
<thead>
<tr>
<th>Signature, Chair:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td></td>
</tr>
</tbody>
</table>

Faculty Senate Review Committee:
___Curriculum Review ___GAAC
___Core Review ___SADAC

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
<td></td>
</tr>
</tbody>
</table>
ATTACH COMPLETE SYLLABUS (as part of this application). This list is online at:
http://www.uaf.edu/uafgov/faculty-senate/curriculum/course-degree-procedures-/uaf-syllabus-requirements/
The Faculty Senate curriculum committees will review the syllabus to ensure that each of
the items listed below are included. If items are missing or unclear, the proposed course
(or changes to it) may be denied.

SYLLABUS CHECKLIST FOR ALL UAF COURSES
During the first week of class, instructors will distribute a course syllabus. Although modifications may be made throughout the semester, this document will contain the following information (as applicable to the discipline):

1. Course information:
 - Title, ☑ number, ☑ credits, ☑ prerequisites, ☑ location, ☐ meeting time
 (make sure that contact hours are in line with credits).

2. Instructor (and if applicable, Teaching Assistant) information:
 - Name, ☑ office location, ☑ office hours, ☑ telephone, ☑ email address.

3. Course readings/materials:
 - ☑ Course textbook title, ☑ author, ☑ edition/publisher.
 - ☑ Supplementary readings (indicate whether ☑ required or ☐ recommended) and
 ☑ any supplies required.

4. Course description:
 - ☑ Content of the course and how it fits into the broader curriculum;
 - ☑ Expected proficiencies required to undertake the course, if applicable.
 - ☑ Inclusion of catalog description is strongly recommended, and
 - ☑ Description in syllabus must be consistent with catalog course description.

5. ☑ Course Goals (general), and (see #6)

6. ☑ Student Learning Outcomes (more specific)

7. Instructional methods:
 - ☑ Describe the teaching techniques (e.g., lecture, case study, small group discussion, private instruction, studio instruction, values clarification, games, journal writing, use of Blackboard, audio/video conferencing, etc.).

8. Course calendar:
 - ☑ A schedule of class topics and assignments must be included. Be specific so that it is clear that the instructor has thought through and will not be making it up on the fly (e.g., it is not adequate to say “lab”. Instead, give each lab a title that describes its content). You may call the outline Tentative or Work in Progress to allow for modifications during the semester.

9. Course policies:
 - ☑ Specify course rules, including your policies on attendance, tardiness, class participation, make-up exams, and plagiarism/academic integrity.

10. Evaluation:
 - ☑ Specify how students will be evaluated, ☑ what factors will be included, ☑ their relative value, and ☑ how they will be tabulated into grades (on a curve, absolute scores, etc.) ☑ Publicize UAF regulations with regard to the grades of “C” and below as applicable to this course. (Not required in the syllabus, but is a convenient way to publicize this.) Link to PDF summary of grading policy for “C”:

11. Support Services:
 - ☑ Describe the student support services such as tutoring (local and/or regional) appropriate for the course.

12. Disabilities Services: Note that the phone# and location have been updated. http://www.uaf.edu/disability/ The Office of Disability Services implements the Americans with Disabilities Act (ADA), and ensures that UAF students have equal access to the campus and course materials.
 - ☑ State that you will work with the Office of Disabilities Services (208 WHITAKER BLDG, 474-5655) to provide reasonable accommodation to students with disabilities.

5/21/2013
Nutritional Biochemistry: Indigenous Health

Chem 494 3 credits 3(2.5+2)

Instructor: Kriya Dunlap, 474-2766, kldunlap@alaska.edu

Office Hours: Department of Chemistry and Biochemistry
West Ridge Research Building (WRRB), 230
3 hours TBA

Lecture: TBA (Likely WRRB 009)

Credit Hours: 3(2.5 hours lecture + 2 hours laboratory/recitation)

Reading Material: Reading material will be provided by the instructor a made available through blackboard
and a course website. Reading material will be a mix of selected peer-reviewed
manuscripts, IACUC and IRB applications, book chapters and special topic reports and
interest pieces.

Recommended: Martha H. Stipanuk
(not required) Biochemical and Physiological Aspects of Human Nutrition, 3rd Edition

Course:
This 3-credit course focuses on integrating introductory concepts from chemistry and biochemistry in
structuring research projects addressing nutritional concerns relevant to Alaska or Native health. Topics
discussed will include components in Alaska foods, such as phytochemicals, thyroid hormone, vitamin D and
omega-3 fatty acids and the health disparities associated with these compounds, such as diabetes, cardiovascular
disease, inflammation, thermoregulation and metabolic syndrome. We will tackle these issues by studying their
biochemical foundation and acquiring an understanding of study design, through the development of testable
hypotheses, data interpretation and research presentation. Literature review, research compliance, research
techniques, experimental design and execution and data interpretation will be central topics. Each topic will be
addressed with a group project, in which the students design, manage, execute and decipher results of their
project. The course is designed for the application of practical biochemical knowledge towards a current
nutritional issue, while simultaneously establishing biochemical skills and resource sharing.

Proficiencies: Some knowledge of general, organic and biochemistry.

Course Goals:
• Understanding the biochemical basis of nutrition through indigenous health and Alaska resources.
• Allow students to integrate concepts learned in general, organic and biochemistry into a nutritional
 context.
• Use basic concepts to formulate hypotheses, select pertinent literature, interpret experimental data and
 propose meaningful experimental approaches to solving current questions in nutritional biochemistry.
• Experience the development of research projects from hypothesis development to data presentation.
• Be exposed to ethical and compliance issues required for modern day funded research.

Learning Outcomes:

1. Identify molecular components in Alaska’s food supply and their role in disease prevention.
2. Correlate chemical and physical properties of nutrients with their cellular functions.
3. Write a testable hypothesis for each project as a group.
4. Keep a detailed laboratory notebook/record, statistically analyze data, and present findings at the chemistry and biochemistry department end-of-year poster session.
5. Use mixed technology or teaching aids, such as iPads, google forms etc. Group interaction will be encouraged.
6. Discuss current IACUC/IRB and address compliance issues pertaining to their projects.

Instructional Methods:

Topics will begin with instructor-led lectures aimed at establishing the biochemical foundations needed to design and execute Alaska relevant nutritional research projects. Once the foundations are established, students will develop a research project pertaining to that unit. Group discussion will offer a platform for brainstorming, troubleshooting, and collaborative research, while establishing successful laboratory practices. Class time will be spent on how to properly conduct a literature search and ways to cite work, but students will do much of their literature review outside of class. Class time will be used for sharing relevant findings that support or refute the project aim or hypothesis. Students will also be guided on developing protocols for executing their experiments and instructed on writing step-by-step protocols. While, there will be an in-depth text book available as a reference (see above), most reading material will include special interest pieces, examples of proposals, examples of protocols, IACUC/IRBs and relevant peer-reviewed manuscripts. Blackboard will be used as a central communication platform for announcements, posting of lectures and reading material, and distribution/collection of exams. For resource sharing, dropbox, googledocs, blackboard and a course website (http://nutritionalbiochemistry.community.uaf.edu).

Evaluation:

Students will be evaluated in five key areas – hypothesis development, literature review, laboratory practices, final research report, and poster presentation.

- Hypothesis development: 15%
- Literature review: 20%
- Laboratory practices, preparation, notebook keeping: 15%
- Research Report: 30%
- Poster: 20%

Grading: Totals will be translated into a letter grade. Total point percentages of 90, 80, 70 and 60 correspond to the lower cutoff boundaries for the grades of A, B, C and D respectively. Percentages less than 60 constitute a failing grade (“F”). Evaluation will be provided with grade break down and grades will be posted in blackboard within a week of completion.

Course Structure:

Attendance and participation:

Regular student attendance is expected to ensure consistent discussion and project progress. Active student participation is expected and because projects are group projects, participation will reflect in your grade.

Hypothesis Development:

Hypothesis development will start at home and be discussed in class. The instructor will provide guidelines and limitations so that students can shape a realistic and testable hypothesis surrounding Alaska foods, Indigenous Health or current nutritional issues. The students will
draft hypotheses at home and bring 2 to 3 hypotheses into class for discussion. Students will decide together as a group which hypothesis to test or how to edit/combine hypotheses into testable project(s). Once the hypothesis or hypotheses is selected, students and the class will work together during class to develop workable aims. Students will be graded on the clarity, testability and relevance of the hypotheses and subsequent aims. This is 15% of the student's overall grade.

Literature Review:
Before students begin their projects, each student will perform a literature review and share it with the class. In class students will decide which facet of the project they will review. For instance, if a project involves certain antioxidants in AK berries, one student might review antioxidants and disease, while another student might do a literature search on berries in general, and yet another on Alaska berries. The students will write-up their literature review into a background or intro section. Students are expected to cite work and start a bibliography. In class students will take everyone's literature review of a particular project and organize it into a cohesive intro or background section including hypothesis and aims to be tested. Students will be graded on quality of literature review, presentation to the class, sources cited, relevance of the information to the hypothesis testing, quality of writing (grammar, flow, spelling etc.), and bibliography. This will constitute 20% of your grade.

Laboratory Practices:
Laboratory practices encompass supply ordering, note-keeping, experiment organization and general laboratory etiquette. Students are expected to keep an up-to-date and detailed laboratory notebook that will be reviewed weekly by the instructor. Students are expected to find best-fit products for the research, taking into account cost, specificity and ease of use, and then fill out a purchase requisition for each item needed. Students will be expected to set up or organize experiments ahead of time (labeling tubes, making reagents etc.) as to minimize waste and expense. General laboratory etiquette is expected. Students will be graded on product selection, laboratory cleanliness, restocking of used materials, use of PPE (Personal Protective Equipment) and laboratory notebook keeping. This constitutes 15% of the total grade for the course. Appropriate safety training and research compliance will be addressed.

Research Report:
A report is due at the completion of each project. Each student will work on a minimum of 3 research projects. Reports will include an introduction, materials and methods, results with statistics, and conclusion. This will be done as a group and individuals will be responsible for each section, alternating from week to week. Sections of the report will be delegated for each person. Sections that students complete will rotate from project to project; student that wrote up material and methods for one project will write-up results for another. Instructor will evaluate a first draft of each report, provide feedback and allow editing before the final report is submitted. Students will be graded on first draft, inclusion of all relevant data, interpretation of data, relevance of research, clarity of research design, statistical interpretation, use of images, table and graphs, quality of the writing, and the interpretation of the research to human health. Reports are worth 30% of the total course grade.

Poster:
The final project is a poster presentation. The students will create posters for each research project. Students will decide which research project they would like to make into a poster. Students will work individually or in pairs to complete the posters. If students are unable to
decide which project to work on, the instructor will assign projects to students. If the students work in pairs, students will report which section or parts of the poster they worked on so that the instructor can grade accordingly. Posters will be presented at the Department of Chemistry and Biochemistry end-of-year poster session. Occasionally, funding is available for instate conferences (WAISC) or there is a University poster session (Midnight Sun Science Symposium). If these opportunities are available students will present posters at these venues. Students will be graded on over-all aesthetics, layout, organization, figures and generally how easy it is to read and find information. Students will also be graded on their ability to answer questions and engage with their audience. This is worth 20% of the total grade for the course.

Ethical Considerations:
Any student caught cheating will be assigned a course grade of “F”. The students academic advisor will be notified of this failing grade and the student will not be allowed to drop the course.

Student Code of Conduct:
As a UAF student, you are subject to the Student Code of Conduct. The university assumes that the integrity of each student and of the student body as a whole will be upheld. Honesty is a primary responsibility of you and every other UAF student. It is your responsibility to help maintain the integrity of the student community. More detailed information about UAF’s Student Code of Conduct can be found at http://www.uaf.edu/catalog/current/academics/reg3.html; it goes as follows:

1) Students will not collaborate on any quizzes, in-class exams, or take-home exams that will contribute to their grade in a course, unless permission is granted by the instructor of the course. Only those materials permitted by the instructor may be used to assist in quizzes and examinations.

2) Students will not represent the work of others as their own. A student will attribute the source of information not original with himself or herself (direct quotes or paraphrases) in compositions, theses and other reports.

3) No work submitted for one course may be submitted for credit in another course without the explicit approval of both instructors. Violations of the Honor Code will result in a failing grade for the assignment and, ordinarily, for the course in which the violation occurred. Moreover, violation of the Honor Code may result in suspension or expulsion.

Support Services:
Support services will be provided by the University of Alaska Library system, online resources and the instructor. Additional services are available through Student Support Services (http://www.uaf.edu/sssp/) at UAF.

Disabilities Services:
We will work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide accommodations for students with disabilities. If you have a disability and require special assistance, please contact the instructor as soon as possible. Students with disabilities must provide a written statement indicating any special requirements that will be necessary as early in the semester as possible (preferably within the first week).
<table>
<thead>
<tr>
<th>Week starting:</th>
<th>Lecture Activity/Topic</th>
<th>Laboratory</th>
<th>Assignment</th>
</tr>
</thead>
</table>
| 01/15/14 | - Syllabus/Course outline
- hypothesis development, report writing, and experimental design | - laboratory safety and compliance
- Distribute lab notebooks and discuss record keeping/ lab etiquette
- go through example lab notebooks. | - Discovery News: Inuit Paradox
- URSA/INBRE student proposals |
| 01/19/14 | - Indigenous Health: Diabetes, Obesity, metabolic syndrome, CVD
- Alaska Foods: polyphenolic compounds (carotenoids, anthocyanins, proanthocyanins) and omega-3 fatty acids | - The principles of ELISA and bioassays.
- how to order materials | - Read protocols for microscopy (how to tag with primary and secondary), ELISAs (GLUT4), and assay kits (nSMase. |
| 01/26/14 | - Quantitative Research: measurable parameters (cytokines, stress hormones, insulin pathway intermediates, antioxidant status, ORAC, fluorescent tags etc.) | - write hypothesis for Assay or ELISA study
- start growing 3T3-L1 cells | - literature review (3 papers or 1 review article) |
| 02/02/14 | - Present summary of literature review
- Discuss experimental protocols | - outline experiment
- layout experiment (label tubes, prep samples etc.)
- crude aqueous extracts of plants | - write-up experiment protocol |
| 02/09/14 | - review statistics (simple t-test, standard deviations, probability, significance) | - run experiment | - write section of report |
| 02/16/14 | Discuss research model systems available: Cell culture, microscopy, archived dog plasma, sled dogs races in march.
- discuss articles | - start differentiating 3T3-L1 cells, layout semester long schedule for the maintenance and differentiation.
- JOVE | - manuscripts on AK berries in neuroinflammation and diabetes.
- manuscript on metabolic syndrome, subsistence foods and cardiovascular disease in AK natives. |
| 02/23/14 | - Qualitative Research: Interviews, Focus groups, analyzing published research, and how to interpret data.
- come up with qualitative index in current | - Discuss homework manuscripts.
- Discuss options for final project using research models available.
- Time constraints, feasibility, vote | - read for discussion, selected documents on Qualitative design.
- write interview/ focus group |
<table>
<thead>
<tr>
<th>Date</th>
<th>Task Details</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/02/14</td>
<td>-Create a focus group/interview topic for in class focus groups. -Interpret results. How do you interpret the results of focus groups?</td>
<td>-Select interview questions from student homework and organize in class (in laboratory) focus group. -Literature review</td>
</tr>
<tr>
<td>03/09/14</td>
<td>-Diet questionnaires, physical activity questionnaires, consent forms, CANHR questionnaires.</td>
<td>-Administer questionnaires to fellow students. -Write section of a report for qualitative index. -Do a 24 hour food recall to hand in after spring break.</td>
</tr>
<tr>
<td>03/16/14</td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>03/23/14</td>
<td>-Address laboratory and research compliance: When is an IACUC or IRB necessary? What laboratory training is required for the methodology proposed? Where do you go to get this training?</td>
<td>-Visit IACUC/IRB office or do online training. -In-class IRB/IACUC preparation for real or mock project. -Read human GLUT4 IRB -Read sled dog IACUC -First draft of qualitative report due -Hypothesis for final project</td>
</tr>
<tr>
<td>03/30/14</td>
<td>-Select/edit hypothesis for final project</td>
<td>-Review protocols and select methods. -Literature review (3 papers or 1 review article) -Prepare section of IRB/IACUC if applicable or petition for waiver.</td>
</tr>
<tr>
<td>04/06/14</td>
<td>-Lecture geared towards selected final project topic. -Discuss literature review</td>
<td>-Fluorescently label cells and visualize under microscope. How do you quantify? -Read protocols</td>
</tr>
<tr>
<td>04/13/14</td>
<td>-Prep for experiment</td>
<td>-Run experiment -Write section of report</td>
</tr>
<tr>
<td>04/20/14</td>
<td>-Lecture on food contamination and bioaccumulation. -Demonstration on augmented reality using mercury and bioaccumulation poster</td>
<td>-How to structure and make a scientific poster -Augmented reality laboratory/do your own. -First draft of final project report</td>
</tr>
<tr>
<td>04/27/14</td>
<td>-Present methods from one of our studies with a JOVE type report.</td>
<td>-Final report due -Complete posters</td>
</tr>
<tr>
<td>05/14</td>
<td>-Poster presentation at Department poster session</td>
<td></td>
</tr>
</tbody>
</table>