TRIAL COURSE OR NEW COURSE PROPOSAL

SUBMITTED BY:

<table>
<thead>
<tr>
<th>Department</th>
<th>GPMSL</th>
<th>College/School</th>
<th>SFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Ana M. Aguilar-Islas</td>
<td>Phone</td>
<td>907 474 1524</td>
</tr>
<tr>
<td>Email</td>
<td>amaguarislas@alaska.edu</td>
<td>Faculty Contact</td>
<td>Ana M. Aguilar-Islas</td>
</tr>
<tr>
<td>Contact</td>
<td>eneumann@alaska.edu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. ACTION DESIRED (CHECK ONE):
- [] Trial Course
- [] New Course

2. COURSE IDENTIFICATION:

<table>
<thead>
<tr>
<th>Dept</th>
<th>MSL</th>
<th>Course #</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>663</td>
<td>3</td>
</tr>
</tbody>
</table>

Justify upper/lower division status & number of credits:

This is a stacked 400/600 level course intended for students with a background in general chemistry and marine science. There will be 3 hours of lecture per week. Homework assignments, a synthesis paper (graduate level), and a presentation will be required. The grading criteria will differ between the two levels. A greater level of sophistication and understanding will be expected from graduate students and this should be demonstrated in the students' assignments and exams. In addition, a higher workload (homework and exams) will be required from graduate students.

3. PROPOSED COURSE TITLE:

Chemical Coastal Processes

4. To be CROSS LISTED?
- [] Yes
- [] No

5. To be STACKED?
- [] Yes
- [] No

6. FREQUENCY OF OFFERING:

Alternate Spring semesters

Fall, Spring, Summer (Every, or Even-numbered Years, or Odd-numbered Years) — or As Demand Warrants

7. SEMESTER & YEAR OF FIRST OFFERING (if approved):

Spring 2013

8. COURSE FORMAT:

NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school's curriculum council. Furthermore, any core course compressed to less than six weeks must be approved by the core review committee.

COURSE FORMAT:
(check all that apply)
- [] 1
- [] 2
- [] 3
- [] 4
- [] 5
- [X] 6 weeks to full semester

OTHER FORMAT (specify)

Mode of delivery (specify lecture, field trips, labs, etc)

9. CONTACT HOURS PER WEEK:

<table>
<thead>
<tr>
<th>Lecture hours/week</th>
<th>Lab hours/week</th>
<th>Practicum hours/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: # of credits are based on contact hours. 800 minutes of lecture=1 credit. 2400 minutes of lab in a science course=1 credit. 1600 minutes in non-science lab=1 credit. 2400-4800 minutes of practicum=1 credit. 2400-8000 minutes of internship=1 credit. This must match with the syllabus. See http://www.ua.gov/ua/gov/faculty/cd/credits.html for more information on number of credits.

OTHER HOURS (specify type)

10. COMPLETE CATALOG DESCRIPTION including dept., number, title and credits (50 words or less, if possible):

MSL S663 Chemical Coastal Processes

3 credits

Offered Spring Odd-numbered years

A study of chemical processes in the coastal ocean. This course will examine chemical interactions at different boundaries, and explore physical and biological controls on the chemistry of coastal environments. Some of the topics to be covered include: The role of suspended particles; coastal acidification; photochemical processes; controls on coastal productivity; future challenges in coastal management. This course is intended for students with a background in general chemistry and marine science. Prerequisite: Upper-division standing, general chemistry (i.e. CHEM 105 and CHEM 106), general oceanography (i.e. The Oceans-MSL 111), or permission from instructor for undergraduate, or graduate standing.

Stacked with MSL 463 (3+0)

MSL 663/463
11. **COURSE CLASSIFICATIONS:** (undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

 H = Humanities
 N = Natural Science
 S = Social Sciences

 Will this course be used to fulfill a requirement for the baccalaureate core? **YES** **NO**

 IF YES, check which core requirements it could be used to fulfill:
 O = Oral Intensive, Format 6
 W = Writing Intensive, Format 7
 Natural Science, Format 8

12. **COURSE REPEATABILITY:**

 Is this course repeatable for credit? **YES** **NO**

 Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

 How many times may the course be repeated for credit? **TIMES**

 If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? **CREDITS**

13. **GRADING SYSTEM:** Specify only one.

 LETTER: **X**

 PASS/FAIL: ****

14. **PREREQUISITES**

 For MSL 663 Graduate Standing. For MSL 463 Upper-division standing, general chemistry (i.e. CHEM 105 and CHEM 106), general oceanography (i.e. The Oceans -MSL 111), or permission from instructor.

 These will be required before the student is allowed to enroll in the course.

15. **SPECIAL RESTRICTIONS, CONDITIONS** None

16. **PROPOSED COURSE FEES** **$0**

 Has a memo been submitted through your dean to the Provost & VCAS for fee approval? **Yes/No**

17. **PREVIOUS HISTORY**

 Has the course been offered as special topics or trial course previously? **No**

 If yes, give semester, year, course #, etc.:

18. **ESTIMATED IMPACT**

 WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.

 No impact on budget, facilities/space. The instructor, a recently hired SFOS faculty, is developing this course to help fulfill her teaching workload (2-3 courses per academic year).

19. **LIBRARY COLLECTIONS**

 Have you contacted the library collection development officer (kjensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

 No **Yes** **X**

 Communication with Anne Christie (Biosciences Library) determined the material required for the course is available from the library collection. An updated list of readings will be provided to Anne to ensure reading material is available to students during the class period.

20. **IMPACTS ON PROGRAMS/DEPTS**

 What programs/departments will be affected by this proposed action?

 Include information on the Programs/Departments contacted (e.g., email, memo)

 A positive impact is expected on the GPMSL by increasing the available courses offered to its students. As part of a minor in Marine Science (paperwork submitted concurrently), this course will contribute to courses offered to MSL minors. A course in chemical coastal processes will be of interest to Fisheries and Environmental Chemistry students (graduate and undergraduate).
21. POSITIVE AND NEGATIVE IMPACTS
Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.

No negative impacts are expected from this course. The MSL program will be impacted positively by offering a course that focuses on the coastal ocean, as the course will promote a better understanding of chemical interactions in coastal waters, and will be useful for students whose research takes place in coastal environments.

JUSTIFICATION FOR ACTION REQUESTED
The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

The coastal ocean is particularly vulnerable to environmental change. Understanding interactions among physical, chemical, and biological processes is necessary to predict and address the effects of ongoing environmental changes. Recent developments, including coastal acidification, eutrophication, and hypoxia in productive coastal regions highlight the need for understanding the chemical interactions involved. Currently the MSL program only offers one graduate course (MSL F626) that focuses on coastal/shelf processes, and it does so from a physical standpoint. Two chemistry-focused courses offered (MSL 660 and MSL 670) address the global ocean, touching only briefly on chemical coastal processes. The proposed course will provide students with a detailed study of chemical processes in the coastal ocean, adding depth and complementing information from the existing courses. The 400-level version is intended to reach upper-division undergraduates interested in the coastal ocean. The two levels will be differentiated by the expected workload and level of understanding. Graduate students will be expected to demonstrate deeper understanding through the homework assignments and exams and will be required to submit a heavier workload.

APPROVALS:

Signature, Chair, Program/Department of:

Date 12/15/10

Signature, Chair, College/School Curriculum Council for:

Date 12/15/10

Signature, Dean, College/School of:

Date 12/15/10

Signature of Provost (if applicable)
Offerings above the level of approved programs must be approved in advance by the Provost.

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

Signature, Chair, UAF Faculty Senate Curriculum Review Committee

Date

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

Signature, Chair, Program/Department of:

Date

Signature, Chair, College/School Curriculum Council for:

Date

Signature, Dean, College/School of:

Date
ATTACH COMPLETE SYLLABUS (as part of this application).

Note: The guidelines are online: http://www.uaf.edu/uafgov/faculty/cd/syllabus.html
The department and campus wide curriculum committees will review the syllabus to ensure that each of the items listed below are included. If items are missing or unclear, the proposed course change will be denied.

SYLLABUS CHECKLIST FOR ALL UAF COURSES
During the first week of class, instructors will distribute a course syllabus. Although modifications may be made throughout the semester, this document will contain the following information (as applicable to the discipline):

1. Course information:
 - Title, □ number, □ credits, □ prerequisites, □ location, □ meeting time
 (make sure that contact hours are in line with credits).

2. Instructor (and if applicable, Teaching Assistant) information:
 - □ Name, □ office location, □ office hours, □ telephone, □ email address.

3. Course readings/materials:
 - □ Course textbook title, □ author, □ edition/publisher.
 - □ Supplementary readings (indicate whether □ required or □ recommended) and
 - □ any supplies required.

4. Course description:
 - □ Content of the course and how it fits into the broader curriculum;
 - □ Expected proficiencies required to undertake the course, if applicable.
 - □ Inclusion of catalog description is strongly recommended, and
 - □ Description in syllabus must be consistent with catalog course description.

5. □ Course Goals (general), and (see #6)

6. □ Student Learning Outcomes (more specific)

7. Instructional methods:
 - □ Describe the teaching techniques (e.g: lecture, case study, small group discussion, private instruction, studio instruction, values clarification, games, journal writing, use of Blackboard, audio/video conferencing, etc.).

8. Course calendar:
 - □ A schedule of class topics and assignments must be included. Be specific so that it is clear that the instructor has thought this through and will not be making it up on the fly (e.g. it is not adequate to say "lab". Instead, give each lab a title that describes its content). You may call the outline Tentative or Work in Progress to allow for modifications during the semester.

9. Course policies:
 - □ Specify course rules, including your policies on attendance, tardiness, class participation, make-up exams, and plagiarism/academic integrity.

10. Evaluation:
 - □ Specify how students will be evaluated, □ what factors will be included, □ their relative value, and
 - □ how they will be tabulated into grades (on a curve, absolute scores, etc.)

11. Support Services:
 - □ Describe the student support services such as tutoring (local and/or regional) appropriate for the course.

12. Disabilities Services:
 - The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials.
 - □ State that you will work with the Office of Disabilities Services (208 WHIT, 474-5655) to provide reasonable accommodation to students with disabilities.”
MSL 463: Chemical Coastal Processes

Instructor: Dr. Ana M. Aguilar-Islas
School of Fisheries and Ocean Sciences
335A Irving II
474-1524
amaguilarislas@alaska.edu

Class meeting times: TBA
Location: TBA
Office Hours: After class (1 hour)
or by appointment

Course Description
A study of chemical processes in the coastal ocean. This course will examine chemical
interactions at different boundaries, and explore physical and biological controls on the
chemistry of coastal environments. Some of the topics to be covered include: The role of
suspended particles; coastal acidification; photochemical processes; controls on coastal
productivity; future challenges in coastal management. This course is intended for students with
a background in general chemistry and marine science.
Prerequisite: Upper-division standing, general chemistry (e.g. CHEM 105 and CHEM 106),
general oceanography (e.g. The Oceans-MSL 111), or permission from instructor for
undergraduates, or graduate standing. Stacked with MSL 663 (3+0)

Course Goals
1. To provide students with a view of the coastal ocean from a chemical perspective.
2. To generate discussion on current and future issues affecting coastal ecosystems.

Learning Objectives
1. Become familiar with chemical processes occurring in coastal/shelf waters.
2. Identify physical and biological controls affecting the distribution and behavior of chemical species.
3. Apply a topic examined during lectures to Alaskan coastal waters

Course Policies and Requirements
Lecture attendance and active participation in class is expected from all students. Class
participation will count for 10% of the final grade. In addition to participation during lectures,
students will be evaluated based on four homework assignments, an oral presentation, two
midterms and a final.

Email communication will be used to distribute class information, updates and changes.

Four homework assignments will be given. Collaboration among students is encouraged.
However, each student is expected to submit their own work. Homework assignments will not be
accepted after the due date, unless arrangements have been made in advance with the instructor.

Exams. There will be two midterms and one final which are to be completed during the regular
class period. The exams will be closed-book, and will require short-essay and diagramed
answers. The final exam will be comprehensive with an emphasis on material covered after the
second midterm.
Background Readings. There is no required textbook. Reading assignments will come from several books and the primary literature. Chapters from textbooks will be found on eReserves (http://eres.uaf.edu/eres/default.aspx) PASSWORD: TBA. Primary literature articles will be obtained from the library (http://library.uaf.edu/findarticles). Contact the instructor or a librarian if you need help obtaining articles.

Student Presentations: All students will make an oral presentation that highlights findings from a chosen journal article addressing a chemical process within an Alaskan/Arctic coastal region (topic and reference to be approved by instructor on week 11 (Tuesday).

Paper selection – remember that it has to be a scientific paper addressing a chemical coastal process. For example, the following paper would not be acceptable.

However, the paper below would be appropriate

Presentations will take place during the last week of lecture.

Note: This is a stacked 400/600 level course. The material covered will be the same for both versions of the course, but the grading will differ. To receive full credit, graduate students will be required to 1) answer the A and B portions of homework and exam questions; 2) write a 10 page synthesis paper; 3) present the topic of the synthesis paper orally to the class; 4) be able to critically evaluate the direction of future coastal/shelf research at the end of the course; and 5) attend and participate in class. While undergraduate level students will be required to 1) answer only the A portion of homework and exam questions; 2) present a published scientific paper orally to the class; and 3) attend and participate in class.

Lack of academic integrity including plagiarism is not acceptable and will not be tolerated.

Points and grading scale for undergraduate students

<table>
<thead>
<tr>
<th>Attendance and active class participation</th>
<th>Possible points</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework (4 assignments)</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Presentation</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>Final</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>

A+ 98-100%
B+ 87-89%
C+ 77-79%
D+ 67-69%
A 93-97%
B 83-86%
C 73-76%
D 63-66%
F < 60%
A- 90-92%
B- 80-82%
C- 70-72%
D- 60-62%
Support and Disability Services
At UAF, the Office of Disability Services (203 WHIT; 474-5655; TTY 474-1827; fydso@uaf.edu) ensures that students with physical or learning disabilities have equal access to the campus and course materials. If you have specialized needs, please contact this office or the instructor to make arrangements.

Lecture Schedule (Subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Topic</th>
<th>Assignment</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>introductions, overview, logistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Coastal zone classification review</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemical composition and mixing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Residence time and input variability</td>
<td>Homework 1 Due</td>
<td>Eyre, 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Florence processes</td>
<td></td>
<td>Boyle et al., 1974; Sholkovitz, 1976</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Organic speciation of trace metals</td>
<td>Hwk 1 returned</td>
<td>van den Berg, 2000; Buck et al., 2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The role of Suspended particles</td>
<td></td>
<td>Turner and Millward, 2002</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Photochemical Processes</td>
<td></td>
<td>Sutlberger, 2000</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Photochemical Processes (cont.)</td>
<td>Homework 2 Due</td>
<td>Moran & Zepp, 2002</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Midterm 1</td>
<td>Hwk 2 returned (22/1, office)</td>
<td>Emerson & Hedges Ch.4</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Carbonate system; Coastal Acidification</td>
<td>Midterm 1 returned</td>
<td>Borges & Gypens, 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coastal Acidification (cont.)</td>
<td></td>
<td>Grantham et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolved Oxygen; hypoxia/anoxia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactions at sediment/water interface</td>
<td>Homework 3 Due</td>
<td>Presley and Trefry 1980; Libes Ch.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sedimentary transformation of organic matter</td>
<td></td>
<td>Artemyev Ch. 4</td>
</tr>
</tbody>
</table>

SPRING BREAK

9		Sedimentary transformation of trace metals	Hwk 3 returned	
10		The role of bacteria		Melnikov Ch. 3
11		The influence of sea ice		
12		Midterm 2	Topic Due. Midterm 2 returned	Libes Ch. 5
13		Isotopes as tracers	Homework 4 Due	Swarzenski et al., 2000
14		Isotopes as tracers (cont.)		
15		Upwelling, fronts and eddies review		
16		Controls on coastal productivity	Hwk 4 returned	Alongi Ch 7
17		Controls on coastal productivity (cont.)		Hutchins et al., 1998
18		Interdisciplinary coastal research		Oceanography, 21(4): 90-107,
19		Coastal Observing Systems		
20		Future challenges and coastal management		Valliela Ch 14
21		Student Presentations		
22		Student Presentations		
23		Final Exam		

Texts

Articles

MSL 663: Chemical Coastal Processes

Instructor: Dr. Ana M. Aguilar-Islas
School of Fisheries and Ocean Sciences
335A Irving II
474-1524
amaguilarislas@alaska.edu

Class meeting times: TBA
Location: TBA
Office Hours: After class (1 hour)
 or by appointment

Course Description
A study of chemical processes in the coastal ocean. This course will examine chemical
interactions at different boundaries, and explore physical and biological controls on the
chemistry of coastal environments. Some of the topics to be covered include: The role of
suspended particles; coastal acidification; photochemical processes; controls on coastal
productivity; future challenges in coastal management. This course is intended for students with
a background in general chemistry and marine science.
Prerequisite: Upper-division standing, general chemistry (e.g. CHEM 105 and CHEM 106),
general oceanography (e.g. The Oceans-MSL 111), or permission from instructor for
undergraduates, or graduate standing. Stacked with MSL 463 (3+0)

Course Goals
1. To provide students with a view of the coastal ocean from a chemical perspective.
2. To generate discussion on current and future issues affecting coastal ecosystems.

Learning Outcomes
1. Become familiar with chemical processes occurring in coastal/shelf waters.
2. Identify physical and biological controls affecting the distribution and behavior of chemical species.
3. Critically evaluate the direction of future coastal/shelf research.
4. Relate topics examined during lectures to Alaskan coastal waters

Course Policies and Requirements
Lecture attendance and active participation in class is expected from all students. Class
participation will count for 10% of the final grade.

Email communication will be used to distribute class information, updates and changes to the
syllabus.

Four homework assignments will be given. Collaboration among students is encouraged.
However, each student is expected to submit their own work. Homework assignments will not be
accepted after the due date, unless arrangements have been made in advance with the instructor.

Exams. There will be two midterms and one final which are to be completed during the regular
class period. The exams will be closed-book, and will require short-essay and diagramed
answers. The final exam will be comprehensive with an emphasis on material covered after the
second midterm.
Background Readings. There is no required textbook. Reading assignments will come from several books and the primary literature. Chapters from textbooks will be found on eReserves (http://eres.uaf.edu/eres/default.aspx) PASSWORD: TBA. Primary literature articles will be obtained from the library (http://library.uaf.edu/findarticles). Contact the instructor or a librarian if you need help obtaining articles.

Synthesis Paper. Choose and investigate a well-defined, focused topic that will be written as a paper. You are to choose an Alaskan coastal region and synthesize 2 to 4 key journal articles on the particular chosen topic and write a synthesis overview.
1. Topics will be selected during the first week of April. You will need instructor approval before moving ahead. This is to ensure you are “on track” with a focused topic.
2. An outline with chosen references will be due on week 12 (Tuesday).
3. The paper will be due in class on week 14 (Tuesday).
4. The body of the paper should have 1.5 line spacing, size 12 font (Time or Times New Roman) and 1 inch margins – it should be approximately 9 to 10 pages with appropriate figures and tables inserted into the text.
5. All tables and figures need to have proper headings or captions, and need to be properly referenced.
6. Reference format:
 In the body of the text “The concept of new production (Eppley and Peterson, 1979) has provided valuable insight…”
 In the Reference section at the end of the paper:
7. The synthesis needs to be in your own words. It is OK to directly use a sentence from one of the articles as long as you use quotes and reference it properly.
Topic selection – remember that it has to be a focused paper from a chemical coastal process perspective. For example, a paper on trace metals in seawater is not acceptable, but a focused paper on sources of mercury in the Aleutian Archipelago would be acceptable. Similarly, a paper on organic matter in seawater is not acceptable, but a focused paper on input of organic matter by the Yukon River would be acceptable.

Student Presentations: All students will make an oral presentation of highlights from their synthesis paper. Presentations will take place during the last week of lecture.

Note: This is a stacked 400/600 level course. The material covered will be the same for both versions of the course, but the grading will differ. To receive full credit, graduate students will be required to 1) answer the A and B portions of homework and exam questions; 2) write a 10 page synthesis paper; 3) present the topic of the synthesis paper orally to the class; 4) be able to critically evaluate the direction of future coastal/shelf research at the end of the course; and 5) attend and participate in class. While undergraduate level students will be required to 1) answer only the A portion of homework and exam questions; 2) present a published scientific paper orally to the class; and 3) attend and participate in class.

Lack of academic integrity including plagiarism is not acceptable and will not be tolerated.
Points and grading scale for graduate students

<table>
<thead>
<tr>
<th>Attendance and active class participation</th>
<th>Possible points</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework (4 assignments)</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>Paper/Presentation</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Final</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>

A+ 98-100%
B+ 87-89%
C+ 77-79%
D+ 67-69%
D 63-66%
F < 60%

A 93-97%
B 83-86%
C 73-76%

Support and Disability Services
At UAF, the Office of Disability Services (203 WHIT; 474-5655; TTY 474-1827; fyds@uaf.edu) ensures that students with physical or learning disabilities have equal access to the campus and course materials. If you have specialized needs, please contact this office or the instructor to make arrangements.

Lecture Schedule (Subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Topic</th>
<th>Assignment</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Introductions, overview, logistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Coastal zone classification</td>
<td></td>
<td>Open University Ch. 5-8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Chemical composition and mixing</td>
<td>Homework 1 Due</td>
<td>Boyle et al., 1974; Sholkovitz, 1976</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Residence time and input variability</td>
<td>Homework 2 Due</td>
<td>Eyre, 1998</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Flocculation processes</td>
<td>Homework 2 Due</td>
<td>Turner and Millward, 2002</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Organic speciation of trace metals</td>
<td>Hwk 1 returned</td>
<td>Sublager, 2000</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>The roll of Suspended particles</td>
<td>Hwk 2 returned (2/21, office)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Photochemical Processes (cont.)</td>
<td>Midterm 1 returned</td>
<td>Emerson & Hedges Ch. 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Midterm 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbonate system; Coastal Acidification</td>
<td>Midterm 1 returned</td>
<td>Borges & Gypens, 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coastal Acidification (cont.)</td>
<td></td>
<td>Grantham et al., 2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissolved Oxygen; hypoxia/anoxia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Interactions at sediment/water interface</td>
<td>Homework 3 Due</td>
<td>Presley and Trefry 1980; Libes Ch. 12</td>
</tr>
<tr>
<td></td>
<td>SPRING BREAK</td>
<td>Sedimentary transformation of organic matter</td>
<td>Artemyev Ch. 4</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Lecture Topic</td>
<td>Assignment</td>
<td>Reading</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Sedimentary transformation of trace metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The role of bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>The influence of sea ice</td>
<td></td>
<td>Melnikov Ch. 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Midterm 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Isotopes as tracers</td>
<td>Topic Due. Midtern 2 returned</td>
<td>Libes Ch. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isotopes as tracers (cont.)</td>
<td></td>
<td>Swarzenski et al., 2000</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Upwelling, fronts and eddies review</td>
<td>Homework 4 Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls on coastal productivity</td>
<td>Outline/References Due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controls on coastal productivity (cont.)</td>
<td>Hwk 4 returned</td>
<td>Alongi Ch 7</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Interdisciplinary coastal research</td>
<td></td>
<td>Hutchins et al., 1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coastal Observing Systems</td>
<td>Paper Due</td>
<td>Oceanography, 21(4): 90-107,</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Future challenges and coastal management</td>
<td></td>
<td>Valiela Ch 14</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Student Presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Final Exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Texts

Articles

Curriculum Committee SFOS

Members: Trent Sutton (Chair)
 Katrin Iken
 Jeremy Mathis
 Andres Lopez

08 December 2010

New Course
Course Number: MSL 463/663
Course Title: Chemical Coastal Processes
Instructor: Ana Aguilar-Islas
First Time of Offering: No for graduate version, yes for undergraduate version

General Recommendations:

On the last page of the course proposal form is a checklist of components to be included in the syllabus. Be sure to go through this checklist to make sure all components are addressed. Failure to do so could result in the delay of getting this course proposal through the UAF Curriculum Review Committee.

Faculty Senate Form:

Clarify and Address the following:

- For course identification, need to include a statement that this is a stacked course and that there will be different grading criteria for undergraduate and graduate students.
- The catalog description (section 10) must appear as it will in the actual catalog; you have title, credits, and description, but no prerequisites or course format (e.g., 3+0).
- Do not check the box for natural science (section 11).
- The UAF Curriculum Review Committee is recommending that recommended courses should not be listed (section 14).
- For section 20 on impacts, include a statement that this course is part of the Minor in Marine Science, the paperwork for which has been submitted concurrently.
- In your justification, must state how the 400-level and 600-level versions of this course differ.

Syllabus:

- Must list office hours.
- For the synthesis paper component, need dates for TBD.
- On page two of the graduate syllabus, must be more explicit on how grading/evaluation will be different between graduate and undergraduate students and how that will be reflected in the assignment of a final grade; must include the same for the undergraduate syllabus.
• For the lecture schedule (both grad and undergrad versions), be consistent on how abbreviate homework.
• For the undergraduate syllabus schedule, you have that a paper is due (there is no synthesis paper for undergraduates).