March 2025

Optimization Comprehensive Exam

DO SIX OF THE FOLLOWING EIGHT PROBLEMS; CLEARLY INDICATE WHICH ONES.

A. (a) Consider the linear programming problem

minimize
$$z = -2x_1 - 3x_2$$
subject to
$$-x_1 + x_2 \ge -3$$

$$-2x_1 + x_2 \le 1$$

$$x_1 + x_2 \le 7$$

$$x_1 \ge 0, x_2 \ge 0$$

Sketch the feasible set S for the above problem. Be sure to label the axes, and **give the** coordinates for each extreme point of S.

- (b) Put the above problem in standard form.
- (c) Which extreme point solves the problem?
- (d) If you start at the extreme point (0,0), and apply the usual simplex method, which will be the next extreme point to be visited?

B. Let \mathcal{E} and \mathcal{I} be finite sets of indices. Consider a feasible set defined by linear equality and inequality constraints:

$$S = \left\{ x \in \mathbb{R}^n : \begin{array}{l} a_i^T x = b_i & \text{for } i \text{ in } \mathcal{E} \\ a_i^T x \ge b_i & \text{for } i \text{ in } \mathcal{I} \end{array} \right\}$$

For each i, we have $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$.

(a) Show that S is convex.

Now assume that $\tilde{x} \in S$ is a feasible point. Note that your conditions in the next two parts will depend on a_i , b_i , and \tilde{x} .

- (b) By definition, $p \in \mathbb{R}^n$ is a feasible direction at \tilde{x} if there is $\epsilon > 0$ so that $x = \tilde{x} + \alpha p$ is feasible $(x \in S)$ for all $0 \le \alpha \le \epsilon$. Identify necessary and sufficient conditions on $p \in \mathbb{R}^n$ so that p is a feasible direction.
- (c) Suppose $p \in \mathbb{R}^n$ is a feasible direction at \tilde{x} . Identify necessary and sufficient conditions on $\alpha \geq 0$ so that $x = \tilde{x} + \alpha p$ is feasible, that is, $x \in S$. (*Hint. These conditions also depend on p.*)
- <u>C.</u> Suppose x is a point of a set $S = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$, where A is an $m \times n$ matrix with $m \leq n$, and $b \in \mathbb{R}^m$. Show that if x is a basic feasible solution then it is an extreme point of S.
- **D.** Consider the 2D unconstrained minimization problem

minimize
$$f(x) = 3\sin(x_1) + \cos(x_2) + \frac{1}{20}(x_1^2 - x_1x_2 + 2x_2^2)$$
.

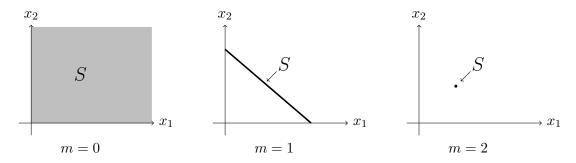
(a) Compute the gradient and the Hessian.

- (b) The surface z = f(x) has many local maxima and minima. Choose an algorithm which would, in good circumstances, quickly find a local minimum, and write a pseudocode for this algorithm. Specifically, this algorithm should use the Hessian *and* it should be guaranteed to converge to a critical point.
- (c) Describe an algorithm which would find all of the local minima in a closed rectangle, for example $R = \{-100 \le x_1 \le 100, -100 \le x_2 \le 100\}$.
- **<u>E.</u>** Assume $f: \mathbb{R}^n \to \mathbb{R}$ is smooth, $b \in \mathbb{R}^m$, and $A \in \mathbb{R}^{m \times n}$ with $m \leq n$. Consider nonlinear optimization problems which have standard-form linear constraints:

minimize
$$f(x)$$

subject to $Ax = b$
 $x \ge 0$

In 2D (n=2) there are three possibilities for the dimension of the feasible set. The cartoons below illustrate these three possibilities in the cases where the feasible sets S are non-empty, generic, and bounded when m>0.



For 3D (n = 3) there are four possibilities m = 0, 1, 2, 3. Sketch the four corresponding cartoons. These cartoons should have the same annotations as the 2D versions above.

<u>F.</u> Consider the problem

minimize
$$f(x) = (x_1 - 1)^2 + (x_2 + 1)^2$$

subject to $x_1^2 + x_2^2 \le 4$
 $x_2 \ge 0$

- (a) Sketch the feasible set and explain informally, perhaps using contours of f, why $x_* = (1,0)^{\top}$ is the solution.
- (b) Write the constraints in the form $g_i(x) \geq 0$. Compute the Lagrangian and its gradient.
- (c) For each of the points $A = (0,0)^{\top}$, $B = (0,2)^{\top}$, and $C = (1,0)^{\top}$, compute the values of the Lagrange multipliers λ_i satisfying the zero-gradient condition. Do any of these points satisfy the first-order optimality conditions?

G. Suppose $c \in \mathbb{R}^n$ is a nonzero vector and consider the problem

minimize
$$z = c^{\top} x$$

subject to $\sum_{i=1}^{n} x_i^2 = 1$

where $x \in \mathbb{R}^n$. Note that the equality constraint can also be written $||x||^2 = 1$.

- (a) Compute the Lagrangian, and its gradient, and state the first-order necessary conditions.
- (b) Solve the first-order conditions algebraically. How many points (x_*, λ_*) satisfy the first-order necessary conditions? What is the solution to the problem?
- <u>**H.**</u> Consider the nonlinear constrained optimization problem

minimize
$$f(x)$$

subject to $g_i(x) = 0, \quad i = 1, ..., \ell$
 $h_i(x) \ge 0, \quad i = 1, ..., m$

- (a) Assume f, g_i, h_i are all smooth. State the Lagrangian for this problem.
- (b) Suppose x_* is a local minimizer. State the complete first-order necessary conditions for the above problem. That is, give the general KKT conditions.