Publications

Recent Peer-Reviewed Publications

(07/26/2019)

  1. Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., Carlo, E. H. D., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., and Weller, R. A. 2019. Autonomous seawater pCO2and pH time series from 40 surface buoys and the emergence of anthropogenic trends, Earth Syst. Sci. Data, 11, 421-439. https://doi.org/10.5194/essd-2018-114
  2. Pilcher, D.J., D.M. Naiman, J.N. Cross, A.J. Hermann, S.A. Siedlecki, G.A. Gibson, and J.T. Mathis. 2019. Modeled effect of coastal biogeochemical processes, climate variability, and ocean acidification on aragonite saturation state in the Bering Sea. Mar. Sci., 5, 508, https://doi.org/10.3389/fmars.2018.00508
  3. Hurst, T.P., Copeman, L.A., Haines, S.A., Meredith, S.D., Daniels, K., and K.M. Hubbard, 2019. Elevated CO2 alters behavior, growth, and lipid composition of Pacific cod larvae, Marine Environmental Research, 145, 52-65. https://doi.org/10.1016/j.marenvres.2019.02.004
  4. Andrade, J.F., Hurst, T.P., Miller, J.A. 2018. Behavioral responses of a coastal flatfish to predation-associated cues and elevated CO2. Journal of Sea Research, 140, 11-21. https://doi.org/10.1016/j.seares.2018.06.013
  5. Cross, J.N., Mathis, J.T., Pickart, R.S., and Bates, N.R., 2017. Formation and transport of corrosive water in the Pacific Arctic region. Deep-Sea Res. II, 152, 67-81. https://doi.org/10.1016/j.dsr2.2018.05.020
  6. Coffey, W.D., Nardone, J.A., Yarram, A., Long, W. C., Swiney, K.M., Foy, R.J., Dickinson, G.H., Ocean acidification leads to altered micromechanical properties of the mineralized cuticle in juvenile red and blue king crabs, Journal of Experimental Marine Biology and Ecology, 495, 1-12, https://doi.org/10.1016/j.jembe.2017.05.011
  7. Oxtoby, L.E., T. Mathis, L.W. Juranek, and M.J. Wooller, 2016. Estimating stable carbon isotope values of microphytobenthos in the Arctic for application to food web studies. Polar Biol., 39(3), 473-483, https://doi.org/10.1007/s00300-015-1800-2
  8. Hurst, T.P., B.J. Laurel, T. Mathis, and L.R. Tabosa (2016): Effects of elevated CO2levels on eggs and larvae of a North Pacific flatfish. ICES J. Mar. Sci., 73, 981–990, https://dx.doi.org/10.1093/icesjms/fsv050
  9. Mathis, J.T., Cooley, S.R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T., Hauri, C., Evans, W., Cross, J.N., Feely, R.A., (2015). Ocean Acidification Risk Assessment for Alaska’s Fishery Sector. Progress in Oceanography. https://doi.org/10.1016/j.pocean.2014.07.001
  10. Evans, W., Mathis, J.T., Cross, J.N., Bates, N.R., Frey, K.E., and Else, B.G.T., et al., 2015. Sea-air CO2 exchange in the western Arctic coastal ocean. Global Biogeochemical Cycles. https://doi.org/10.1002/2015GB005153
  11. Frisch, L.C., Mathis, J.T., Kettle, N.P., Trainor, S.F., 2015. Gauging perceptions of ocean acidification in Alaska. Marine Policy. https://doi.org/10.1016/j.marpol.2014.11.022
  12. Evans, W., Mathis, J.T., Ramsay, J., Hetrick, J., 2015. On the Frontline: Tracking Ocean Acidification in an Alaskan Shellfish Hatchery. PLOS One. https://doi.org/10.1371/journal.pone.0130384
  13. Reisdorph, S.C. and Mathis, J.T., 2014. Assessing net community production in a glaciated Alaska fjord.  Biogeosciences Discuss. https://doi.org/10.5194/bgd-11-13029-2014
  14. Cross, J.N., Mathis, J.T., Frey, K., Cosca, C., Danielson, S.L., Bates, N.R., Feely, R.A., Takahashi, T., Evans, W., (2014). Annual sea-air CO2 fluxes in the Bering Sea: Insights from new autumn and winter observations of a seasonally ice-covered continental shelf.  Journal of Geophysical Research. https://doi.org/10.1002/2013JC009579
  15. Bates, N.R., Garley, R., Frey, K.E., Shake, K.L., Mathis, J.T., (2014). Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice. Biogeosciences Discussions. https://doi.org/10.5194/bgd-11-1097-2014
Full list as of 07/26/2019 [PDF]
Back to Top