Cover crops and nitrogen release from various organic amendments

Mingchu Zhang, professor of soil science

Institute of Agriculture, Natural Resources and Extension

Outline of the presentation

- Cover crops in peony field
 - Cover crop to depress weeds
 - Compost of biomass from cover crop for suppressing botytis disease
- Nitrogen release
 - Nitrogen released from soil organic matter
 - Nitrogen release from various organic amendments

Weeds between the peony rows

Botrytis at the stems near soil surface

Botrytis at the stems near soil surface

Cover crop mixture: Crimson red clover 2018 cover crops in interior seeded in middle July.

13 crimson clover

11 Italien rye grass

14 dandelions

3 chickweed

1 plantago

2 shepherds purse

2 pineapple weed

1 equisetum

Weed survey in sample plot, 6 feet into cover crop

Cover crop mixture: Crimson red clover

Willow cover crop plots in 2018 estimated average cover 50%.

Cover crop plots in Homer, cover crop mixture: crimson red clover + Buckwheat

Average weeds population: 7%

2019 cover crop plots in interior, seeded in early June, average weeds: <5%

2019 cover crop plots in Willow.

Weed population < 5%

Crimson red clover appeared not growing well.

2019 cover crop plot in Homer, photos taken in June.

Cover crop mixture: Crimson red clover+ buckwheat

Estimated weed population: 8%

Photos Taken August 29, 2019

Plot 1: 80% cover. 10% weeds.

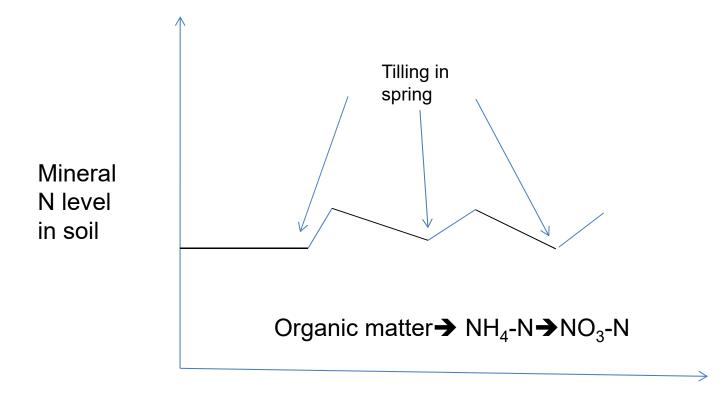
Plot 2: 90% cover. 0% weeds.

Plot 3: 10% cover. 0% weeds.

Estimated weed population: 7%

Photos Taken June 20, 2019

1st cover crop harvest, filled bin Almost to top. Turned every few days. Mixing in some Top soil. Had to dump greens out of the bin to turn the pile And then add back to the bin. Breakdown of compost very Slow despite the heat of the high tunnel.


Photo Taken September 3, 2019

Composting was not successful, probably due to high C:N ratio (not enough clover biomass).

Nitrogen release from organic amendments

- Soil organic matter
- Fish based products
- Compost
 - Yard waste
 - Municipality
- Animal manure
 - Horse manure
 - Chicken manure
 - Cow manure
 - Cattle

Time

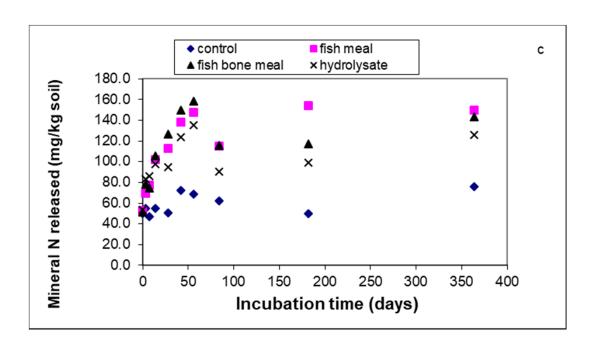
Estimated soil N release in three regions of Alaska

	Soil organic matter content (%)									
	<2.5	2.5 – 5.0	5.0 – 7.5	7.5 – 10.0	>10.0					
Location	Estimated N released from soil organic matter (lbs/acre)									
Kenai/Homer	2.5	7.5	12.5	17.5	22.5					
Interior	7.5	15.0	22.5	30	37.5					
Trapper Creek/Palmer	5.0	10	15	20	25					

Municipal co-compost, Alberta experience

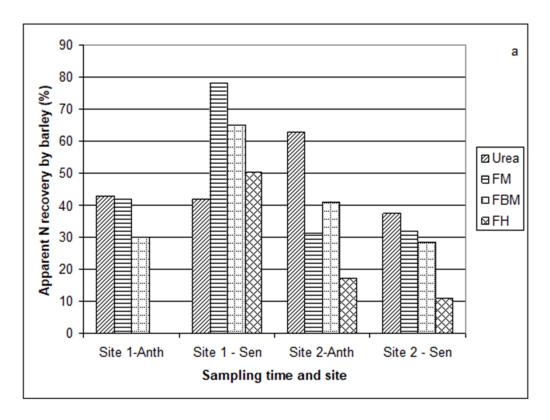
Percent of N used by crops after application

1 st year	2 nd year	3rd year	4th year
11	3	1	2


Fish compost, Homer Alaska experience

With fish compost

Without fish compost



Nitrogen released from fish byproducts in 52-week incubation in the soil at the Fairbanks site at 59°F (15°C), total mineral N.

Barley above ground biomass yield at anthesis and senescence stages at two sites after fish byproduct application.

Treat. ¹	Biomass yield (t/ha) at t	Biomass yield (t/ha) at the year of byproduct application									
	F	airbanks	Del	Delta Junction							
	Anthesis	Senescence	Anthesis	Senescence							
2006											
Control	2.05	10.57	0.43	4.23							
Urea 100	2.25	11.51	2.00	7.30							
FM 50	1.93	13.05	0.74	3.78							
FM100	2.38	15.37	1.08	5.40							
FM 150	2.41	14.61	1.15	7.44							
FBM 50	1.91	14.05	1.03	4.89							
FBM 100	1.97	11.05	1.03	5.87							
FBM 150	2.26	16.17	1.46	7.93							
FH 50	1.73	11.29	0.92	4.91							
FH100	2.07	11.98	1.01	6.79							
FH 150	1.90	14.81	1.56	6.18							
Prob (F test)	NS ² (0.78)	NS (0.61)	0.0008	NS (0.70)							
LSD (0.05)	NA ³	NA	0.58	NA							

Average apparent N recovery in the year of fish byproduct application, residual N recovery in 2007 from fish byproduct applied in 2006 Site 1 = Fairbanks, Site 2 = Delta Junction, FM=fish meal, FBM=fish bone meal, FH=fish hydrolysate.

Average manure N recovery per year in three years in Palmer Alaska

	Bromegrass	Oat
Urea	10%	7%
Liquid cattle manure	19%	12%
Solid cattle manure	3%	3%

Table 16.9

COMMONLY USED ORGANIC NUTRIENT SOURCES: THEIR APPROXIMATE NUTRIENT CONTENTS AND OTHER CHARACTERISTICS

Along with nitrogen-fixing legumes grown in rotation and as cover grops materials.

Along with nitrogen-fixing legumes grown in rotation and as cover crops, materials such as these (except sewage sludge and municipal solid wastes) provide the mains free-range animals not given feed supplements may be considerably lower in both nitrogen and phosphorus.

	% a		Perc	ent of	dry we	ight			g/N	/lg of	dry w	eight		
Material	Water	Total N	P	K	Ca	Mg	S	Fe	Mn	Zn	Cı	и В	M	0
Coffee grounds ^b	60	1.6	0.01	0.04	0.08	0.01	0.11	330	50	15	40	0 _	5 5	- May acidify soil.
Cottonseed meal	<15	7	1.5	1.5	_	_			_	, ,		6	4 4	
Dairy cow manure ^c	75	2.4	0.7	2.1	1.4	0.8	0.3	1,800	165	165	30	20	8 8	- Acidifies soil. Commonly used as livestock feed.
Dried blood	<10	13	1	1	_		0.5	1,000	103	100	30	20	Te I	- May contain high-C bedding.
Dried fish meal	<15	10	3	3	-	-			3	_	100		S. T.	 Slaughterhouse by-product, N available quickly. Incorporate or compost due to bad odors. Can feed to livestock.
Feedlot cattle manure ^d	80	1.9	0.7	2.0	1.3	0.7	0.5	5,000	40	8	2	14	1	May contain soil and soluble salts.
Hardwood tree leaves ^e	20	1.0	0.1	0.4	1.6	0.2	0.1	1,500	550	80	10	-	2.9	High Pb for some street trees.
Horse manure ^d	65	1.4	0.4	1.0	1.6	0.6	0.3	-	200	125	25			May contain high-C bedding.
Municipal solid waste compost ^f	40	1.2	0.3	0.4	3.1	0.3	0.2	14,000	500	650	280		7	May have high C/N, heavy metals, plastic, and glass.
Poultry (broiler) manure ^c	35	4.4	2.1	2.6	2.3	1.0	0.6	1,000	413	480	172	40	0.7	May contain high-C bedding, high soluble salts, arsenic, and ammonia.
Sewage sludge, activated	<10	6	1.5	0.5	2.0		2.0	40,000		450	-		-	e.g. Milorganite [®] , N released 2–6 months, low solubility low salt index. Poor on cold soil.
Sewage sludge, digested	80	4.5	2.0	0.3	1.5 ⁹	0.2	0.2	16,000 ^g	200	700	500	100	15	May contain high soluble salts, toxic heavy metals, pharmaceuticals.
Sheep manure ^d	68	3.5	0.6	1.0	0.5	0.2	0.2	2 2 5	150	175	30	30		neavy metals, pharmaceuticals.
Spoiled legume hay	40	2.5	0.2	1.8	0.2	0.2	0.2	100	100	50		1,500	3	May contain weed seeds.
Swine manure ^d Wood wastes	72	2.1	0.8	1.2	1.6	0.3	0.3	1,100 2,000	182 8,000	500 500	300 50	75 30	0.6	May contain elevated Cu and Zn. Very high C/N ratio; must be supplemented by other N.
Young rye green manure	85	2.5	0.2	2.1	0.1	0.05	0.04	100	50	40	5	5	0.05	Nutrient content decreases with advancing maturity.

^aWater content given for fresh materials. Processing and storage methods may alter water content to less than 5% (heat dried) or to more than 95% (slurry).

^bCoffee grinds data from Krogmann et al. (2003).

^{*}Broiler and dairy manure composition estimated from means of ~ 800 and 400 samples analyzed by the University of Maryland manure analysis program 1985–1990.

Composition of swine, sheep, and horse manure calculated from Zublena et al. (1993) and Cu and Zn in swine averaged from other sources.

[&]quot;Hardwood leaf data from Heckman and Kluchinski (1996).

Composition of municipal solid waste compost based on mean values from ten composting facilities in the United States as reported by He et al. (1995). Sulfur as sulfate-S.

^{*}Sludge contents of Ca and Fe may vary tenfold depending on the wastewater treatment processes used.

Table 16.11

RELEASE OF MINERAL NITROGEN FROM VARIOUS ORGANIC MATERIALS APPLIED TO SOILS,

AS PERCENT OF THE ORGANIC NITROGEN ORIGINALLY PRESENT^a

For example, if 10 Mg of poultry floor litter initially contains 300 kg N in organic forms, 50% or 150 kg of N would be mineralized in year 1. Another 15% (0.15 \times 300) or 45 kg of N would be released in the year 2.

Organic nitrogen source	Year 1	Year 2	Year 3	Year 4
Poultry floor litter	55	20	8	3
Dairy manure (fresh solid)	25	18	9	4
Swine manure lagoon liquid	45	12	6	2
Feedlot cattle manure	30	15	6	2
Composted feedlot manure	18	18	4	1
Lime-stabilized, aerobically digested sewage sludge	40	12	5	2
Anaerobically digested sewage sludge	20	8	4	1
Composted sewage sludge	10	5	3	2
Activated, unstabilized sewage sludge	45	15	4	2
Flowering stage legume cover crop foliage	80	15	5	2

^aThese values are approximate and may need to be increased for warm climates or sandy soils and decreased for cold or dry climates or heavy clay soils. Release rates estimated from many sources.

Figure 16.32 Organic material stabilized by digestion or composting mineralizes more slowly than the raw unstabilized material. Here, nitrate nitrogen accumulates in a site.

Organic feedstock		C:N
_	High in carbon	
Corn stalks		60-70
Straw		40-150
Fall leaves		30-80
Sawdust		200-700
Brush, wood chips		100-500
Bark (paper mill waste)		100-130
Newspaper		400-800
Cardboard		500
Mixed paper		150-200
Wilked paper		100 200
	High in Nitrogen	
Hay		15-30
Dairy manure		5-25
Poultry manure		5-15
Hog manure		10-20
Cull potatoes		18
Vegetable wastes		10-20
Coffee grounds		20
Grass clippings		15-25
Municipal biosolids		9-25

Collected from various sources in literature, Jan. 2016

Photo taken from fish compost field in 2008

In summary

- Fish based fertilizers: nutrient released instantly.
- Compost: less than 10% of applied N release in the 1st year, then <5% in 2nd year and around 1 to 2% in the subsequent years.
- Manure N release in Alaska, liquid manure fast than solid manure, about 30% N release in 1st year, and less in the subsequent years for <u>liquid manure</u>.

How much you need to apply?

Assuming that the manure (or compost) has 5% of N, and your recommendation for a crop is 100 lbs N/acre, and N release in the first year is 10%.

Step 1. Calculate how much manure needed to satisfy the N recommendation:

100 lbs N/acre /5% = 2,000 lbs manure/acre,

Step 2. Factor in the N release in the first year: 2000 lbs manure/acre /10% = 20,000 lbs manure/acre.

Total manure needed per acre = 20,000 lbs