The Fairbanks Campus of the University of Alaska.
SOURCES OF INFORMATION
University of Alaska
Fairbanks Campus

<table>
<thead>
<tr>
<th>Mailing Address</th>
<th>University of Alaska</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fairbanks, Alaska 99701</td>
</tr>
<tr>
<td>General Information</td>
<td>Executive Officer and Provost</td>
</tr>
<tr>
<td>Public Relations, News Service</td>
<td>Director, University Relations</td>
</tr>
<tr>
<td>Admissions and Residence Hall Applications</td>
<td>Director of Admissions and Registrar</td>
</tr>
<tr>
<td>Scholarships, Loans, Part-Time Employment</td>
<td>Head, Financial Aids</td>
</tr>
<tr>
<td>Extracurricular Activities</td>
<td>Head, Student Activities</td>
</tr>
<tr>
<td>Student Housing</td>
<td>Head, Student Housing</td>
</tr>
<tr>
<td>Graduate Study</td>
<td>Provost</td>
</tr>
<tr>
<td>Summer Sessions</td>
<td>Provost</td>
</tr>
<tr>
<td>Evening Classes and Correspondence Study</td>
<td>Division of Statewide Services</td>
</tr>
<tr>
<td>Short Courses, Conferences</td>
<td>Director, Division of Statewide Services</td>
</tr>
<tr>
<td>Alumni Association</td>
<td>Head, Alumni Services and Career Planning and Placement</td>
</tr>
<tr>
<td>Cooperative Extension Service</td>
<td>Director, Cooperative Extension Service</td>
</tr>
</tbody>
</table>

The University of Alaska, Fairbanks, is one unit of the University of Alaska statewide system of higher education. Under the direction of the Board of Regents, the University of Alaska serves the people of America's largest state through eight community colleges and three University campuses. A bulletin describing the organization of the University and outlining the offerings of each unit is available without charge from Director of Admissions and Registrar, University of Alaska, Fairbanks, Alaska 99701. The catalog for each unit in the system may be obtained from the registrar of that unit.
1973-74 University Calendar

1973 Summer Sessions

Short Session ... June 11-29
Regular Session ... July 2 - Aug. 10
Special Session .. July 23 - Aug. 10
Workshop on Alaska .. Aug. 13-17

1973 Fall Semester

Residence Halls Open ... Sun. Sept. 2
Labor Day ... Mon. Sept. 3
General Faculty Convocation Tues. Sept. 4
Faculty Meetings (Academic Colleges) Tues. Sept. 4
Faculty Meetings (Departmental) Tues. Sept. 4
Orientation & Guidance Testing for New Students Tues. & Wed. Sept. 4 & 5
Registration and Counseling Wed. & Thur. Sept. 5 & 6
Instruction Begins ... Fri. Sept. 7
Late Registration Closes .. Fri. Sept. 14
Last Day to Make Up Incomplete Grades Mon. Oct. 22
Six Week Grade Reports ... Mon. Oct. 22
Last Day for Student-Initiated Withdrawals Wed. Nov. 21
Thanksgiving Holiday ... Thurs. & Fri. Nov. 22 & 23
End of Instruction/Examinations Thurs. Dec. 20
Final Grades on File with Registrar Noon, Fri. Dec. 21
End of Fall Semester ... Fri. Dec. 21

1974 Spring Semester

Residence Halls Open .. Sat. Jan. 12
Registration & Counseling Mon. & Tues. Jan. 14 & 15
Instruction Begins .. Wed. Jan. 16
Late Registration Closes .. Wed. Jan. 23
Last Day to Make Up Incomplete Grades Tues. Feb. 26
Six Week Grade Reports ... Tues. Feb. 26
Spring Recess .. 5 pm, Sat. Mar. 23 thru
Final Draft of Thesis due to Chairman, Advisory Committee Fri. Apr. 1
Late Day for Student-Initiated Withdrawals Fri. Apr. 19
All Campus Day (no classes) Fri. Apr. 19
Last Day to Submit Graduate Final Exam Form to Registrar Fri. May 10
End of Instruction/Examinations Wed. May 15
Final Copies of Theses due to Provost or V.P. for Research Wed. May 15
Final Senior Grades on File with Registrar 9 am, Thurs. May 16
End of Spring Semester .. Thurs. May 16
Final Grades on File with Registrar 5 pm, Fri. May 17
Commencement ... Sun. May 19

1974 Summer Sessions

Short Session ... June 10-28
Workshop on Alaska .. June 24-28
Regular Session .. July 1 - Aug. 9
Special Session .. July 22 - Aug. 9
Workshop on Alaska .. Aug. 12 - 16
1 Institute of Agricultural Sciences Experimental Farm.
2 Elvey Building — Geophysical Institute.
3 Arctic Environmental Research Laboratory and Arctic Health Research Center.
5 Laurence Irving Building — Classrooms, laboratories, College of Biological Sciences and Renewable Resources, Institute of Arctic Biology, Alaska Cooperative Wildlife Research Unit.
6 College Magnetic and Seismological Observatory.
7 Observation point.
8 Beluga (Dome) — ice skating and hockey.
9 Patty Building — Department of Health, Physical Education, and Recreation facilities and offices including gym, pool, and rifle range; Reserve Officers Training Corps (ROTC).
10 Moore Hall — residence hall.
11 Bartlett Hall — residence hall.
12 Hess Dining Commons.
13 Skarland Hall — residence hall.
14 Married student housing.
15 Faculty housing.
16 Modular units — graduate student housing.
17 Lathrop Hall — residence hall.
18 Stevens Hall — residence hall.
19 University Commons — dining facility for residence hall occupants.
20 Nerland Hall — residence hall.
21 McIntosh Hall — residence hall.
22 Chapman Building — science facilities, herbarium.
23 Faculty housing.
24 President's residence.
25 Faculty housing.
26 Faculty housing.
27 Harwood Hall — married student apartments.
28 Faculty housing.
29 Stuart Hall — faculty apartments.
30 Fire Station.
31 Walsh Hall — married student apartments.
32 Health and Safety Building.
33 Wickersham Hall — residence hall.
34 William R. Wood Campus Activity Center — ASUA and student activities offices, games, lounge, food service, master scheduling board.
35 Atkinson Building — power plant.
36 Water tank.
37 Eielson Building — Classrooms, laboratories, Department of Evening Classes and Correspondence Study, Audio-Visual Communications, Musk Ox Project, and Statewide Services.
38 University Museum — Northern Native peoples, natural history and Alaska history, research collections, and exhibits. Open to the public.
39 Ernest Gruening Building — General classroom and office building; College of Behavioral Sciences and Education; Institute of Social, Economic, and Government Research.
40 Constitution Hall — Bookstore, Post Office, Alumni Services and Career Planning and Placement Office, Student Orientation Services, KMPS.
41 Fine arts complex.
42 Regents Great Hall.
43 Elmer E. Rasmuson Library.

44 Brooks Building — Classrooms, laboratories, College of Earth Sciences and Mineral Industry, Mineral Industry Research Laboratory.
45 Duckering Building — Classrooms; laboratories; College of Mathematics, Physical Sciences, and Engineering; Institute of Marine Science; Institute of Arctic Environmental Engineering; Computer Center; State Highway Testing Laboratory.
46 Bunnell Building — General administrative offices, classrooms, Schaible Lecture Hall, Cooperative Extension Service, Graphic Services.
47 U.S. Forest Service.
48 Totem pole.
49 Services Building — Maintenance facilities, State Division of Mines and Geology.
50 Musk Ox Farm — Station for musk ox domestication project with viewing platform along Yankovich Road for visitors. Three miles from campus.
51 Yak Estates — faculty and staff housing, three miles from campus.

Parking lot.
The William R. Wood Campus Center offers many facilities for recreation and relaxation.
The University dates from July 4, 1915, when the Hon. James Wickersham, delegate to Congress from Alaska, laid the cornerstone on land set aside by Congress on March 4 for the support of a land-grant college. The Territorial Legislature by its acts of May 3, 1917, accepted the land-grant and created a corporation, “The Alaska Agricultural College and School of Mines,” defining its duties and providing for a Board of Trustees consisting of eight members.

The college opened for instruction on September 18, 1922, with the Hon. Charles E. Bunnell as president. The college became the University of Alaska by act of the Territorial Legislature July 1, 1935; the Board of Trustees became the Board of Regents. The University offered its first summer session in 1947. In 1949, Dr. Terris Moore succeeded President Bunnell, who became President Emeritus.

Dr. Ernest N. Patty, member of the first faculty of the Alaska Agricultural College and School of Mines and former dean of the college, was inaugurated as the third president of the University in 1953 and named President Emeritus upon his retirement in 1980. Dr. William R. Wood became the University’s fourth president at that time. Dr. Robert W. Hiatt became the University’s fifth president in 1973 upon the retirement of Dr. Wood.

Today, the University of Alaska, Fairbanks is one of three university and seven community college campuses located throughout the State as part of the University of Alaska System.

The University is accredited as an institution of higher learning by the Northwest Association of Secondary and Higher Schools; belongs to the Association of American Colleges, the Association of State Universities and Land-Grant Colleges, and the National Commission of Accrediting; and has institutional membership in the American Council of Education, the American Association of Colleges for Teacher Education, and the Western Interstate Commission for Higher Education.

The four-year curricula in mining engineering and geological engineering and five-year curricula in civil engineering and electrical engineering are accredited by the Engineers’ Council for Professional Development. The council represents the principal engineering societies and examining boards of the United States and Canada.

The University is approved by the Federal Office of Vocational Education for teacher-training in vocational home economics. It also is on the approved list of colleges and universities of the American Association of University Women.

The city of Fairbanks is served by air, rail, and highway. Major airlines providing flights to Fairbanks are Alaska, Pan American, and Wien. The Alaska Railroad provides passenger and freight service between Fairbanks and Anchorage and other points south. The city may be reached by bus or private automobile from Anchorage and southcentral Alaska, and it is the northern terminus of the Alaska Highway, which provides a direct overland link with the 48 contiguous states.

The University of Alaska's Fairbanks Campus is some four miles west-northwest of the Fairbanks central business district. A private bus line offers service between the campus and downtown.
General Information

ENROLLMENT HISTORY AND SUMMARY

Enrollment History — Fairbanks Campus

<table>
<thead>
<tr>
<th>Year</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1922-23</td>
<td>15</td>
</tr>
<tr>
<td>1932-33</td>
<td>121</td>
</tr>
<tr>
<td>1942-43</td>
<td>157</td>
</tr>
<tr>
<td>1952-53</td>
<td>296</td>
</tr>
<tr>
<td>1962-63</td>
<td>1159</td>
</tr>
<tr>
<td>1969-70</td>
<td>2225</td>
</tr>
<tr>
<td>1970-71</td>
<td>2681</td>
</tr>
</tbody>
</table>

Enrollment Summary 1972-73 First Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshmen</td>
<td>479</td>
<td>455</td>
<td>934</td>
</tr>
<tr>
<td>Sophomores</td>
<td>234</td>
<td>147</td>
<td>381</td>
</tr>
<tr>
<td>Juniors</td>
<td>178</td>
<td>92</td>
<td>270</td>
</tr>
<tr>
<td>Seniors</td>
<td>186</td>
<td>79</td>
<td>265</td>
</tr>
<tr>
<td>Graduates</td>
<td>186</td>
<td>51</td>
<td>237</td>
</tr>
<tr>
<td>Without Class Standing</td>
<td>375</td>
<td>361</td>
<td>736</td>
</tr>
<tr>
<td>Transfers</td>
<td>189</td>
<td>146</td>
<td>335</td>
</tr>
<tr>
<td>Totals</td>
<td>1827</td>
<td>1331</td>
<td>3158</td>
</tr>
</tbody>
</table>

Enrollment Distribution 1972-73 First Semester

<table>
<thead>
<tr>
<th>Category</th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>1282</td>
<td>1107</td>
<td>2389</td>
</tr>
<tr>
<td>Other States and U.S. Possessions</td>
<td>482</td>
<td>197</td>
<td>679</td>
</tr>
<tr>
<td>Foreign Countries</td>
<td>63</td>
<td>27</td>
<td>90</td>
</tr>
<tr>
<td>Totals</td>
<td>1827</td>
<td>1331</td>
<td>3158</td>
</tr>
</tbody>
</table>
APPLYING FOR ADMISSION

When to Apply

It is recommended that seniors in high school make application for admission during the first semester of their senior year, if they plan to enroll at the University during the next fall semester. Transfer and graduate students should make application at least four months prior to the beginning of the semester in which they plan to enroll at the University of Alaska. Applications for admission will be accepted until August 1 for the fall semester and December 1 for the spring semester. Applications received after these closing dates may be considered for the following semester.

How to Apply — Read Carefully

Application forms may be obtained from the Office of the Director of Admissions and Registrar. Applications for admission will be considered only when the following credentials have been received by the Office of the Director of Admissions and Registrar:

1. Application for Admission. $10 application fee must accompany the completed application for admission form.

2. Scholastic Records. An applicant is required to have complete official transcripts of all high school and college credits sent to the University of Alaska in support of his application. An official high school transcript or a secondary school record form completed by the high school where the applicant finished his high school work should be mailed to the University from the high school. A high school transcript is not required of a graduate applicant or a transfer applicant who has completed more than one full year of college work elsewhere. An official transcript from each college or university attended must be sent to the Director of Admissions and Registrar. The applicant is responsible for requesting that these transcripts be sent to the University of Alaska but transcripts will not be accepted unless they are sent to the Director of Admissions and Registrar directly from the other college or university attended.

3. ACT Test. Results from the tests prepared by the American College Testing Program (ACT) are required for all entering freshmen and those transfer students with less than 30 semester hours of transferable credit. Test results must be on file with the Office of the Director of Admissions and Registrar before final acceptance and approval for registration is granted. It is the responsibility of the student to have the test results sent to this office.

4. Letters of Recommendation (graduate applicants only). At least three letters of recommendation are required from people capable of describing the applicant's character and ability to undertake graduate study and research and should be forwarded to the Director of Admissions.

After Acceptance

After receiving and processing the required credentials, a statement of acceptance will be mailed to the applicant. After the acceptance statement is received, the following items, where applicable, should be completed and mailed to the proper offices within the time limits suggested.

1. College Catalogs (transfer students only). A transfer student is responsible for having catalogs of colleges previously attended sent to the Director of Admissions and Registrar at least two months prior to the expected date of enrollment.

2. Medical and Physical Examination. Registration at the University is dependent upon the applicant having completed a recent physical examination which will confirm that his health is sufficient to enable him to undertake successfully the course of study for which he is applying. This requirement applies to all new students enrolling for seven credits or more, students enrolling for seven or more hours for the first time, and to former students returning to the University after an absence of two or more semesters enrolling for seven or more credits. The physical examination is to be completed by the physician of the applicant's choice, and recorded on the University physical examination form within 6 months of the registration date. Results of a tuberculin test within the year (also of chest X-ray within the year if the test is positive) must be included. These all must be completed and on file.
Admissions

at the Student Health Center before registration may be completed. A physical examination form will be sent with the statement of acceptance. This information will be used only as a background for providing thoughtful health care. It will not jeopardize school status. All medical records are kept confidential on file at the Student Health Center. Although a new physical examination is not required each year, it is a yearly requirement for all students enrolling for seven or more credit hours to have a completed tuberculin skin test (a minimum of 48 hours is required before the test is read) or a chest X-ray. A chest X-ray must be taken if the tuberculin test is positive. A student will not be permitted to register unless this requirement is met and the results of the test recorded at the Student Health Center.

ADMISSION REQUIREMENTS
FOR FRESHMEN

High School Graduates
— Baccalaureate Programs

1. Residents. An Alaska high school graduate with an academic average of "C" or higher is eligible for admission. An Alaskan whose high school grades averaged less than "C" will be considered for admission to the University in a baccalaureate degree program only if his performance on the ACT Test demonstrates that he has the capacity to successfully undertake college academic work. The ACT test is administered at testing centers throughout the country in October, December, February, April, and July of each year. Most Alaska high schools serve as ACT testing centers in December and/or February. Arrangements for taking the ACT test may be made through high school principals or guidance officers.

2. Nonresidents. A nonresident high school graduate with an academic average of "B" or higher is eligible for admission. A nonresident whose high school grades average less than "B" will be considered for admission to the University only if his performance on the ACT test demonstrates exceptional ability and if there is space available in his desired major field of study. Information concerning ACT testing centers and dates may be obtained from most high schools throughout the nation and from the American College Testing Program, Post Office Box 168, Iowa City, Iowa.

Non-High School Graduates
— Baccalaureate Programs

A mature student, at least 21 years of age, residing in Alaska, who has not graduated from high school, or been awarded a high school diploma on the basis of GED or military tests, or has not completed any previous college level work, may be admitted. Such a student will become a baccalaureate degree candidate after completion of not less than 30 collegiate semester hours of credit with at least a "C" average (2.00).

High School Graduates—Associate Programs

Any Alaskan high school graduate is eligible for admission to an associate degree program. An Alaskan applicant with less than a "C" average may be directed to a community college near his home for his initial enrollment with the University of Alaska.

ADMISSION REQUIREMENTS
FOR TRANSFER STUDENTS

An applicant who has attended another accredited institution is eligible for admission provided he has a 2.00 grade point average and honorable dismissal if space is available. The University will transfer credits from other accredited institutions when the grades of courses completed are "C" or above. Transfer credits are evaluated and equated by the registrar after a student is admitted to the University. The University reserves the right to reject work of doubtful quality or to require an examination before credit is allowed.

A transfer student with less than 30 acceptable credits is required to take the test prepared by the American College Testing Program. Information concerning ACT testing centers and dates may be obtained from most high schools throughout the nation and from the American College Testing Program, Post Office Box 168, Iowa City, Iowa.

A member of the Armed Forces who has taken USAFI Courses may, upon application for admission and presentation of credentials to the Registrar's Office, receive credits as recommended in the Evaluation of Educational Experiences of the Armed Forces. College credit will not be allowed for the General Education Development Tests.
Specific Entrance Requirements

The specific high-school-credit entrance requirements of the six colleges of the University are given in this table:

<table>
<thead>
<tr>
<th>College</th>
<th>English</th>
<th>Mathematics</th>
<th>Foreign Language</th>
<th>U.S. History</th>
<th>Natural or Social Science</th>
<th>Academic and Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>College of Arts and Letters</td>
<td>3</td>
<td>Algebra - 1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geom. - 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Behavioral Sciences and Education:</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Anthropology, Psychology, and Sociology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education and Home Economics</td>
<td>3</td>
<td>*2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Biological Sciences and Renewable Resources</td>
<td>3</td>
<td>†Algebra - 2</td>
<td>1</td>
<td>1</td>
<td>Physics or Chemistry - 1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geom. - 1</td>
<td></td>
<td></td>
<td>Biology or Elective - 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trig. - ½</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Business, Economics, and Government:</td>
<td>3</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Business</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics, and Political Science</td>
<td>3</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Earth Sciences and Mineral Industry:</td>
<td>3</td>
<td>Algebra - 2</td>
<td>0</td>
<td>1</td>
<td>Physics or Chemistry - 1</td>
<td>7½</td>
</tr>
<tr>
<td>Geology, Geological Engineering, Mining</td>
<td></td>
<td>Geom. - 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td>Trig. - ½</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Mathematics, Physical Sciences, and Engineering</td>
<td>3</td>
<td>Algebra - 2</td>
<td>0</td>
<td>1</td>
<td>Physics or Chemistry - 1</td>
<td>7½</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geom. - 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trig. - ½</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Plane Geometry required of Education students who intend to select teaching majors and/or minors in mathematics, chemistry and/or physics.

**Students who offer two units of a high school foreign language will normally enroll in a second year language. See Orientation and Placement page 35.

†One year of algebra and one year of geometry will be acceptable for students in Agriculture and Biological Sciences not wishing to continue with advanced studies—graduate work, medicine, etc.

+Two years of French, German or Russian language highly recommended. See specific degree programs.

An entering freshman whose background of training in English and mathematics appears to be deficient when measured by placement tests may be required to take Engl. 100 or Math. 105 or both. Achievement of a certain level of excellence in these subjects is essential to success in other areas of study. These basic English and mathematics courses are especially designed to assist the student in achieving these competencies.

After enrollment at the University, a student may receive credit by presenting acceptable CEEB Advanced Placement Test Scores, or the equivalent, when test scores warrant it and may receive course credit by examination upon presentation of adequate justification.
Admissions

ADMISSION REQUIREMENTS FOR STUDENTS WITH BACCALAUREATE DEGREES

Non-Degree Programs — An applicant who holds a bachelor's degree but who has not defined his graduate program or declared the subject in which he wishes to pursue his studies toward a higher degree may be admitted as a student without standing if space permits. Students in this category include:

1. those who plan to take "interest courses."
2. those completing work for a teaching certificate.
3. those completing a second undergraduate major and/or a second bachelor's degree.
4. those strengthening their preparation in order to be admitted to graduate study.
5. transient students expecting to be at the University only briefly.
6. students awaiting action on applications for graduate status.

Admission as a Graduate Student — In general, a student may be admitted to graduate status if he has a bachelor's degree from an accredited institution with at least a "B" average in his major and if his major is deemed suitable for continuation of studies in the field of his choice. Specific requirements for graduate admission and study are found under the heading "General Requirements for Graduate Study" in the "Degrees" section of this catalog.

ADMISSION REQUIREMENTS FOR OTHERS

Special Students. A person who is at least 21 years of age may be admitted without filing transcripts of high school or college work completed. Such a student is limited to enrollment in two classes and no more than six credits per semester. A special student is subject to the academic regulations of the University, but is not considered a degree candidate until regular admission requirements are met and transcripts filed.

Auditors. An auditor is a student who enrolls for informational instruction only. He does not receive academic credit, does not have laboratory privileges, and may not submit papers for correction and grading. An auditor must apply for admission, register formally on the designated registration dates, obtain approval of class instructors, and pay the required fees.

A course in which a student is registered as an auditor may not be completed for credit by examination at a later date.

High School Students. To facilitate the transition and adjustment from high school to college, the University has made special provisions for students of varied background and ability. Qualified Alaska high school seniors of advanced academic standing and ability are permitted to enroll, while attending high school, in certain University of Alaska classes taught by University faculty and to enroll in college courses which may be offered at authorized high schools. To qualify for admission to college classes while still attending high school, a high school senior must have the recommendation of his high school principal, the approval of his parents, and a satisfactory score on the usual testing program required for entering students. Credits earned in such college classes may not be applied to high school graduation, but will apply toward graduation from the University and may be transferred to other universities following graduation from high school, provided the grades earned are satisfactory. Seniors who are interested in participating in this program should contact their high school principal.

CONDITIONAL AND FINAL ACCEPTANCE

A qualified applicant can be accepted for admission while currently enrolled in his last semester of high school or at another college. However, the acceptance is conditional upon receipt of ACT scores, an official transcript indicating the satisfactory completion of the work in progress at the time of acceptance and, in the case of a high school senior or graduate applicant, the completion of graduation requirements.

Final acceptance to the University for the purpose of earning scholastic credit becomes complete only when all credentials have been received and accepted by the Director of Admissions and Registrar.
SUMMARY OF SEMESTER CHARGES

Full-time Undergraduate Students

<table>
<thead>
<tr>
<th></th>
<th>Resident</th>
<th>Nonresident</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident tuition</td>
<td></td>
<td>$300.00</td>
</tr>
<tr>
<td>University fee (12 through 17 credit hours)</td>
<td>$160.00</td>
<td>160.00</td>
</tr>
<tr>
<td>(Each additional credit hour above 17—$20.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus activity fee</td>
<td>36.00</td>
<td>36.00</td>
</tr>
<tr>
<td>*Health Service fee (approx.)</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total per semester</td>
<td>$236.00</td>
<td>$536.00</td>
</tr>
</tbody>
</table>

Part-time Undergraduate Students

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>Resident</th>
<th>Nonresident</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 credit hours</td>
<td>$160.00</td>
<td>$410.00</td>
</tr>
<tr>
<td>10 credit hours</td>
<td>160.00</td>
<td>360.00</td>
</tr>
<tr>
<td>9 credit hours</td>
<td>160.00</td>
<td>310.00</td>
</tr>
<tr>
<td>8 credit hours</td>
<td>160.00</td>
<td>260.00</td>
</tr>
<tr>
<td>7 credit hours</td>
<td>140.00</td>
<td>190.00</td>
</tr>
<tr>
<td>1/2 through 6 credit hours—$20 per credit hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus activity fee (7 through 11 credit hours)</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>Recreational athletic fee — $5.00</td>
<td>(voluntary)</td>
<td>(voluntary)</td>
</tr>
<tr>
<td>*Health Service fee (approx. $40.00)</td>
<td>(voluntary)</td>
<td>(voluntary)</td>
</tr>
<tr>
<td>Total per semester</td>
<td>$316.00</td>
<td>$618.00</td>
</tr>
</tbody>
</table>

Full-time Graduate Students

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$300.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresident tuition</td>
<td></td>
<td>$300.00</td>
</tr>
<tr>
<td>600- and 700-level courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 through 15 credit hours)</td>
<td>$240.00</td>
<td>240.00</td>
</tr>
<tr>
<td>(Each additional credit hour above 15—$30.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus activity fee</td>
<td>36.00</td>
<td>36.00</td>
</tr>
<tr>
<td>*Health Service fee (approx.)</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Total per semester</td>
<td>$316.00</td>
<td>$618.00</td>
</tr>
</tbody>
</table>

Part-time Graduate Students (600-level courses)

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>Resident</th>
<th>Nonresident</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 credit hours</td>
<td>$240.00</td>
<td>$490.00</td>
</tr>
<tr>
<td>10 credit hours</td>
<td>240.00</td>
<td>440.00</td>
</tr>
<tr>
<td>9 credit hours</td>
<td>240.00</td>
<td>390.00</td>
</tr>
<tr>
<td>8 credit hours</td>
<td>240.00</td>
<td>340.00</td>
</tr>
<tr>
<td>7 credit hours</td>
<td>210.00</td>
<td>260.00</td>
</tr>
<tr>
<td>1/2 through 6 credit hours—$30 per credit hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus activity fee (7 through 11 credit hours)</td>
<td>36.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Recreational athletic fee — $5.00</td>
<td>(voluntary)</td>
<td>(voluntary)</td>
</tr>
<tr>
<td>*Health Service fee (approx. $40.00)</td>
<td>(voluntary)</td>
<td>(voluntary)</td>
</tr>
</tbody>
</table>

*See page 17 for Health Service fees.

NOTE: When a combination of undergraduate and 600-level courses is taken, the appropriate full- or part-time graduate-level University fee for the total number of hours taken or a combination of undergraduate and graduate credit-hour fees, whichever is lower, will be paid.
Fees

Residence Hall Rents and Meal Tickets

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Rooms</td>
<td>$285.00</td>
</tr>
<tr>
<td>Single Rooms</td>
<td>300.00</td>
</tr>
<tr>
<td>Meal Ticket</td>
<td>475.00</td>
</tr>
</tbody>
</table>

Other Fees

<table>
<thead>
<tr>
<th>Fee</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Fee (Remit with Application)</td>
<td>$10.00</td>
</tr>
<tr>
<td>Late Registration Fee</td>
<td></td>
</tr>
<tr>
<td>First Day</td>
<td>5.00</td>
</tr>
<tr>
<td>Each succeeding day</td>
<td>2.00</td>
</tr>
<tr>
<td>Change of Registration Fee (after 3rd day)</td>
<td>1.00</td>
</tr>
<tr>
<td>Credit by Examination Fee (each examination)</td>
<td>15.00</td>
</tr>
</tbody>
</table>

*Health Service Fee (Approx.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Student</td>
<td>40.00</td>
</tr>
<tr>
<td>Student with Spouse</td>
<td>62.00</td>
</tr>
<tr>
<td>Student with Spouse and Children</td>
<td>84.00</td>
</tr>
</tbody>
</table>

*See page 17 for Health Service fees.

All fees approved by the Board of Regents, University of Alaska.
The University reserves the right to change or add to its fees at any time.

Fee assessments are subject to audit and correction, and any such adjustments will be made within fifteen days following the close of late registration.

Other expenses at registration time will require extra funds for less predictable amounts, including personal and social expenses, textbooks, meals needed before meal tickets become effective, bus fare, athletic equipment, musical instruments, and other specialized classroom supplies which certain students may need.

RESIDENCY

Alaskan residents as well as students from Hawaii, the Yukon Territory, and the Northwest Territories are exempt from a nonresident tuition fee. Alaskan residents are defined as persons 18 years of age or older who have established residence in Alaska for at least one year prior to the date set for registration. The residence of those under 18 years of age is the residence of the parents or legal guardian as defined above.

CAMPUS ACTIVITY FEE

Full-time undergraduate students carrying 12 or more semester credit hours or the equivalent, and graduate students carrying 7 or more semester credit hours or the equivalent, shall be charged a Campus Activity Fee totaling $36 per semester.

Undergraduate students carrying 7-11 semester credit hours or the equivalent shall be charged a Campus Activity Fee totaling $20 per semester.

In the case of married-student couples, each individual must pay the activity fee appropriate to his or her credit-hour load.

Each will receive an identification card entitling him/her to privileges in the following programs, as noted:

Recreation-Athletics Program—Those paying the $36 fee are entitled to the use of the Patty Building recreational facilities, including pool, and admission to scheduled athletic events. This program is administered by the head of the Department of Health, Physical Education, and Recreation. This program receives $4.50 of the $36 fee. (Part-time students and dependents of...
students may voluntarily purchase an activities card entitling them to the privileges of the recreational - athletic program at $5 a semester.)

Associated Students Program—Those paying the $36 fee are entitled to participation in all student-managed social, educational, and governmental activities, including receipt of student paper, movies, student flying program, KMPS (student-run radio station), scheduled social events, student elections, and administration of student government. The $36 fee provides $16.50 for this program.

Those paying the $20 fee are entitled to participation in all Associated Students Programs with the exception of voting, holding A.S.U.A. offices, and movies (note: the full activity fee of $36 entitles the holder to free admission to A.S.U.A. movies when budgetary considerations allow). The $20 fee provides $5 for the Associated Students Program.

William Ransom Wood Campus Center—All students carrying seven or more semester credit hours or the equivalent shall be charged a fee of $15 a semester to be applied toward the repayment of the construction loan for the building. This amount is included in the $36 and the $20 fee.

ROOM AND BOARD

Contracts for room and board are binding from the date signed to the end of the academic year. Room rental covers all lounge, recreation room, storage, laundry room, and telephone privileges. Toll calls may not be made from floor phones in residence halls.

Room Deposit — The completed application for housing, with a $50 reservation and damage deposit, must be returned to the Head of Student Housing, University of Alaska, Fairbanks, Alaska 99701. If you decide not to attend the University of Alaska, and a written statement is received by the Housing Office, the policy in regard to refunds will be as follows:

Fall Semester — Cancellations received prior to August 15: $25 will be refunded. Cancellations received on or after August 15: No refund of deposit.

Spring Semester — Cancellations received prior to December 15: $25 will be refunded. Cancellations received on or after December 15: No refund of deposit.

Refund of Room Deposit—If all provisions of the contract have been complied with and no damages have been assessed, the $50 deposit will be refunded at the end of the school year. The deposit may be used to pay outstanding hall dues and/or charges for repair or replacement of damaged furniture or fixtures for which the student is responsible. Charges for loss or damage of equipment or for defacement of any area in community use, such as lounges, recreation rooms, corridors, or bathrooms, may be assessed equally against the residents of the area. In addition, the deposit may be used to pay other outstanding University bills or charges. Any balance remaining in the deposit after all charges have been paid will be refunded after the close of the contract period. If the resident elects to reapply for room in the residence hall for the following year, his deposit will not be refunded, but will be transferred to the renewal application.

There are no refunds for applications made and then cancelled after August 15 or December 15.

Room rent is refundable only in emergency cases as approved by the Head of Student Housing. However, there are no refunds after the sixth week of the semester or later.

Meal Tickets — When registering, each residence hall occupant is required to buy a meal ticket for cafeteria meals at $475.00 per semester. Meal tickets become effective at the evening meal on registration day of each semester. Refunds are granted only with approval of the Head of Student Housing upon formal withdrawal, for absence on University activities, or for extreme personal emergencies. The unused portion less a service charge equal to five days' meals will be refunded. No refunds will be given if a student withdraws during the last two weeks of the semester.

Semester meal tickets do not include vacation periods. Meals may be purchased during vacation periods.

STUDENT HEALTH SERVICE FEE

All students under 26 years of age, carrying seven or more semester credit hours or equivalent, shall be charged a Student Health Service Fee to be quoted at registration. The fee
Fees

covers use of the Health Center and participation in a group medical plan to cover accidents and sickness.

The Student Health Program is administered by the Health Center under the direction of the Director of Student Affairs and the Head of Student Health. Hospital and medical treatment for extensive illnesses and injuries are provided in nearby Fairbanks, under limits of coverage set forth in the student health insurance plan. Each student will be supplied with a brochure outlining the insurance coverage.

Students 26 years of age and over, carrying seven or more semester credit hours or equivalent, who do not wish to participate in the group medical plan and who have adequate coverage under another health policy may use the Health Center by paying a fee of $5 a semester. These students must have a physical examination on file at the Student Health Center.

A married student may secure additional coverage for spouse and children if desired. Rates for such coverage will be quoted at registration time. This additional coverage is for the insurance plan only and does not include services at the Health Center.

A spouse who is a student carrying seven or more semester credit hours or equivalent, and who has a physical examination on file in the Student Health Center, may use the Health Center by paying a fee of $5 per semester. Such person must also be covered under his or her spouse’s Student Health Insurance Program.

Late Placement and Guidance Test Fee — A charge of $5 shall be made for a placement and guidance test taken at a time other than the scheduled time.

Graduate Placement Fee — If credentials are not filed before graduation, a $10 charge is made for filing and one year of service. Thereafter, $5 is charged for each year the file is used.

Graduate Extended Registration Fee — Graduate students extending registration from previous semester must pay the graduate extended registration fee of $27.00 (see page 31 for details).

Program Plan Fee — The Registrar’s Office will provide without charge one plan for a schedule of courses leading to a degree. A second program plan will be provided for a fee of $5.

Music Course Fees — All music fees shall be waived for students enrolled for seven or more credit hours and taking a major or minor in music, as certified by the department chairman. Fees for class lessons: $15. Fees for private lessons: $45. Practice room rental: $7.50.

Drop/Add Fee — A charge of $1 is made for each course added or dropped after the third day of classes following the scheduled registration date. When the change in courses is faculty-initiated or due to the rescheduling or cancellation of a course by the University, no charge will be made. If the drop/add alters the status of a student from part-time to full-time or vice versa, an appropriate adjustment in registration fees will be made.

Parking Fee — A fee is charged for on-campus automobile parking. Parking-fee information will be available at the place of registration or from the Office of Safety and Security. Income from parking fees is used to provide parking-lot maintenance, electricity, and security, and for the construction of new parking lots.

MISCELLANEOUS FEES

Admission Application Fee — A fee of $10 shall be paid at the time an application for admission is submitted.

Late Registration Penalty — Students registering later than the day designated for that purpose shall pay a late registration fine of $5 for the first day, plus $2 for each succeeding working day allowed for late registration.

Examination Fee — A fee of $15 shall be charged for each examination taken for removal of an incomplete, clearance of an entrance deficiency, or credit by examination. For more than three credits, an additional charge of $1 per credit hour shall be charged.

PAYMENT OF FEES

At the announced time of registration each student is expected to pay all charges due for the entire semester. This includes tuition and fees, room rent, meal tickets, student activity fees, health insurance, and deposits. In addition, any charges unpaid at the end of previous semesters
are due and payable prior to reenrollment at the University.

Students who have difficulty in meeting these charges have the alternative of requesting a deferred payment plan. The Office of Financial Aids accepts such applications. Requests for the deferred payment plan should be made in writing at least one month prior to registration. Failure to do so may delay the registration process and cause the late fee to be charged. Applications submitted on the date of enrollment will be processed on a time-available basis and students run the risk of delayed registration and resulting late fees as well as closed classes.

When fees are to be paid by other persons or agencies after the registration process is completed, students should coordinate the fee payment arrangements in advance with either the Office of Financial Aids or the Business Office. Failure to do so may delay the registration process.

Provisions for the deferred payment plan are as follows:

1. Fifty percent or one-half of the total charges must be paid at registration time.

2. The balance is due in two equal monthly payments. These are due thirty days and sixty days following the date of registration as announced by the Registrar.

3. A processing fee of $2 for the initial contract and $2 per payment is added to the amount of the contract.

4. Delinquent payments are subject to an additional $2 charge.

FINANCIAL OBLIGATIONS

The University reserves the right to withhold transcripts, diplomas, or final grade reports from students who have not paid all financial obligations to the institution. If a student is delinquent in payment of any amount due the University, registration for succeeding semesters may be withheld.

Registration of any student may be cancelled at any time for failure to meet installment contract payments or financial obligations. The registration process is not completed until all fees and charges due the University have been paid.

REFUNDS

Refunds of the University Fee, Tuition Fee, and Music Course Fees shall be made to withdrawing students upon completion and final processing of the appropriate forms. Refunds are made according to the following schedule:

Withdrawal prior to the sixth (6) day of instruction — full refund of the above fees only.
Withdrawal on or after the sixth day of instruction, but within 30 calendar days from the beginning of instruction — 50% refund.
Withdrawal after 30 calendar days from the beginning of instruction — no refund.

Health Service, Campus Activity Fee and miscellaneous fees shall not be subject to refund.

Students withdrawing under discipline forfeit all rights to the return of any portion of their fees.

Applications for refund may be refused unless they are made during the semester in which the fees apply.
The Ernest Gruening Building is reflected in a window of the Wood Center.
Three types of financial aid are available at the University of Alaska:

1. Grants (Scholarships)
2. Loans
3. Part-Time Employment

GRANTS (SCHOLARSHIPS)

At the present time grants are awarded only to Alaskan high school seniors and to currently enrolled University of Alaska students. Nonresidents must successfully complete at least two semesters of academic work at the University of Alaska before they become eligible to apply for scholarship assistance.

A new grant program — the Basic Educational Opportunity Grant Program — has been authorized by Congress but there is uncertainty about whether it will be functioning by the 1973-74 academic year. Details regarding the program, application procedures, etc., have not been developed as of the printing date for this catalog; however, information should be available from the Office of Financial Aid during Spring Semester, 1973.

The Supplemental Educational Opportunity Grant Program replaces the Educational Opportunity Grant Program and is designed to provide assistance to students with acute need.

The Law Enforcement Education Program provides grants for full-time law enforcement personnel enrolled at the University of Alaska. Students under this program may receive funds in the amount of fees and books. Applications for this program should be made one month prior to registration.

A limited number of Talent Grants are awarded each year to students of extremely high capabilities and potential in the performing arts and athletics. Amounts awarded are $1,400 per year for Alaska residents and $1,700 for nonresidents. Contributors to the program for 1972-73 included First National Bank; University of Alaska Alumni Association; Alaska National Bank; Burgess Construction; E.L. Cassel; Professional Pharmacy; Mr. and Mrs. Lawrence Stoll; Mr. and Mrs. D. Young; Chandler Plumbing & Heating; Gene K. Kutsch, DMD; James Beckley, DVM; Arctic Swim Club Parents Association; Big Ray's Surplus Store; Craig-Taylor Equipment; Fairbanks Quarterback Club; John L. Manley; Yukon Office Supply; Fairbanks Medical-Surgical Clinic; Travelers Inn; Paul Stutzman; Rotary Club of Fairbanks; Aurora Motors; Bruce Kruger; and Fred Machetanz.

Information regarding the Bureau of Indian Affairs Grant-in-Aid program may be obtained from the Anchorage Area Office of the Bureau of Indian Affairs. Students should apply by April 1 to know the amount of assistance available to them prior to arriving at the University.

Although numerous grants are awarded annually to students at the University of Alaska by various individuals and organizations, the table on the next page includes only those which were administered by the University's Financial Aid Committee during the 1972-73 school year.

Although need is the primary basis upon which these grants are given, demonstration of academic competence, personal characteristics, and contributions to the University community are evaluated.

Recipients at the University of Alaska forfeit the entire grant which is to become effective in the forthcoming semester if they earn below 2.0 grade point average in the current semester. Grants are automatically forfeited by recipients who do not enroll during a semester in which their grant is in effect, who enroll for less than a full-time program of studies without special arrangement with the scholarship program coordinator, who are placed on disciplinary probation, or who are suspended from the University for disciplinary reasons.

LOANS

Emergency Loans are available to all regularly enrolled full-time students whose financial need is modest and temporary. Although emergency loans require no cosigner, they are limited to $100 for not more than 30 days and interest is in the form of a flat service charge of 2% per loan or 50 cents if repayment is made within ten days of the date of the borrowing.
Scholarships Administered by Financial Aid Committee (1972-73)

<table>
<thead>
<tr>
<th>Name of Scholarship</th>
<th>Number</th>
<th>Total Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIME, Southwestern Alaska Section</td>
<td>One</td>
<td>$ 400</td>
</tr>
<tr>
<td>Alaska Insurance Agency</td>
<td>One</td>
<td>100</td>
</tr>
<tr>
<td>"Major George W. Albrecht Memorial"</td>
<td>Varies</td>
<td>30,000</td>
</tr>
<tr>
<td>Alaska Native Scholarships</td>
<td>One</td>
<td>250</td>
</tr>
<tr>
<td>Alaska State Employees Association</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"President John F. Kennedy Memorial"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covenant High School Alumni Association</td>
<td>One</td>
<td>50</td>
</tr>
<tr>
<td>"Stanton Oyomick Memorial"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Opportunity Grant</td>
<td>Varies</td>
<td>45,884</td>
</tr>
<tr>
<td>First National Bank of Fairbanks</td>
<td>Two</td>
<td>850</td>
</tr>
<tr>
<td>General Motors</td>
<td>One</td>
<td>940</td>
</tr>
<tr>
<td>Henderson Estate, John B.</td>
<td>Varies</td>
<td>5,300</td>
</tr>
<tr>
<td>Hess Estate, Harriet</td>
<td>Three</td>
<td>1,500</td>
</tr>
<tr>
<td>Hess Estate, Luther</td>
<td>Three</td>
<td>2,500</td>
</tr>
<tr>
<td>Kennecott Copper Corporation</td>
<td>Two</td>
<td>1,000</td>
</tr>
<tr>
<td>Ketchikan Pulp</td>
<td>One</td>
<td>250</td>
</tr>
<tr>
<td>Lathrop Estate, Austin E.</td>
<td>Varies</td>
<td>3,000</td>
</tr>
<tr>
<td>Leach Estate, Frank M.</td>
<td>Two</td>
<td>800</td>
</tr>
<tr>
<td>Lewis Fund, Charles W. and Hortense W.</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>McCarthy, David Memorial Fund</td>
<td>Two</td>
<td>1,000</td>
</tr>
<tr>
<td>McIntosh Estate, Jessie O’Bryan</td>
<td>Varies</td>
<td>13,500</td>
</tr>
<tr>
<td>McKinnon Scholarship, Emma</td>
<td>Two</td>
<td>700</td>
</tr>
<tr>
<td>Mellon Foundation</td>
<td>Varies</td>
<td>9,000</td>
</tr>
<tr>
<td>National Bank of Alaska</td>
<td>Varies</td>
<td>3,300</td>
</tr>
<tr>
<td>National Electrical Contractors Association</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>Northern Commercial Company</td>
<td>Two</td>
<td>1,000</td>
</tr>
<tr>
<td>Phipps, Margaret R.</td>
<td>One</td>
<td>450</td>
</tr>
<tr>
<td>Pioneers of Alaska Igloo No. 4</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>Presser Foundation</td>
<td>One</td>
<td>400</td>
</tr>
<tr>
<td>Radio Corporation of America</td>
<td>Two</td>
<td>800</td>
</tr>
<tr>
<td>Ralston Purina Company</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>Reading & Bates Scholarship</td>
<td>Varies</td>
<td>500</td>
</tr>
<tr>
<td>Sheppard Trading Company</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>State Room Scholarships</td>
<td>Varies</td>
<td>40,000</td>
</tr>
<tr>
<td>Unalakleet PTA "Sen. William E. Beltz Memorial"</td>
<td>One</td>
<td>400</td>
</tr>
<tr>
<td>U.S. Smelting, Refining and Mining Company</td>
<td>One</td>
<td>250</td>
</tr>
<tr>
<td>Union Oil Company — Geology</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>Union Oil Company — Civil Engineering</td>
<td>One</td>
<td>500</td>
</tr>
<tr>
<td>University of Alaska Alumni Association</td>
<td>One</td>
<td>400</td>
</tr>
<tr>
<td>Women’s Athletic Association</td>
<td>Five</td>
<td>700</td>
</tr>
</tbody>
</table>

University Loans are available to currently enrolled students who have successfully completed one previous semester as full-time students. Loans are limited to $500 and are payable prior to the forthcoming September 1.

The interest rate on the money borrowed is four per cent per annum. The loan requires a cosigner (not a fellow student), and will be made only for University expenses such as room, board, fees, and books.
The University Loan Fund represents the pooled resources of several separate loan funds given to the University over a period of many years:

- Anchorage Women’s Club (1926)
- American Military Engineer Revolving Loan Fund
- Lawrence C. Phipps (1930)
- Fairbanks High School Alumni (1932)
- First National Bank (1945)
- Phi Tau Gamma (1953)
- Palmer Community (1953)
- Glenn Carrington (1953)
- Larry Doheny (1953)
- Pioneer Women of Alaska (1954)
- Women’s Auxiliary No. 4, Pioneers of Alaska (1957)
- Dave M. Dishaw (1958)
- Rotary Club of Fairbanks (1963)
- James E. Nankervis Memorial (1961)
- Herman Turner Memorial (1961)
- Marianne Casson Memorial Fund (1965)
- Ketchikan Communication Committee (1966)
- Southern California Alumni (1963)
- Arthur A. and Anne Shonbeck Memorial (1964)
- Anchorage Soil Conservation Subdistrict No. 4 (1966)
- Ann Meeks Memorial Fund (1967)
- Anchorage High School (1956)
- Anchorage High School PTA (1959)
- Sheils-Timson (1938)
- Leopold F. Schmidt (1938)
- Palmer Associated Students (1941)
- Frank Slaven (1944)
- Mr. & Mrs. Walter G. Culver (1959)
- Verne E. Roberts Memorial (1960)
- James Stanley Rodebaugh Memorial (1960)
- Terris Moore (1971)
- Lt. Donald R. Robinson Memorial Fund (1968)
- Patrick Anderson Memorial Fund (1969)

The Juneau Women’s Club has a $5,000 loan fund on deposit with the University of Alaska for the use of Greater Juneau Borough High School graduates.

The Stefano Loan Fund was established by Mr. Ralph R. Stefano, consulting engineer of Fairbanks, for the purpose of furthering instruction in mechanical engineering.

The Society of American Military Engineers Revolving Loan Fund enables students in engineering, science, and mathematics to borrow money to continue their education under terms similar to those of the University Loan Fund. Application is made through the Financial Aids Office.

The Alaska Miners Association Loan Fund is available to sophomore, junior, and senior students in the College of Earth Sciences and Mineral Industry. Under terms similar to the University Loan Fund, students may borrow up to $500 per year to a maximum of $1,000 and repay after graduation at 4% interest. Applications are made through the University Loan Committee with final approval by the Dean of the College of Earth Sciences and Mineral Industry.

The Ralph P. Cernak Memorial Loan Fund is available to junior and senior students in the College of Earth Sciences and Mineral Industry, with preference to Geology and Geological Engineering majors. Under terms similar to the University Loan Fund, students may borrow up to $200 and loans are repayable one year after graduation at 4% interest. Applications are made through the Office of the Dean of the College of Earth Sciences and Mineral Industry.

The Alumni Association Loan Fund, established in 1971, provides short-term, interest-free loans of up to $500 to full-time students.

United Student Aid Funds and Federally Insured Student Loans are long-term loans whereby an undergraduate or graduate student can borrow, through his home-town bank, a maximum of $2,500 a year for educational expenses. The loans are repaid at 7% interest (minimum payment is $30 monthly), with payments beginning nine months after separation from the institution.

Any full-time student who is a two-year resident of the state of Alaska and has a high
Financial Aids

school diploma or the equivalent, is eligible to apply for an Alaska State Scholarship Loan. Undergraduate students may borrow up to $2,500 a year to pay for educational expenses at any accredited institution in the world. Graduate students may borrow up to $5,000 a year. If a student completes his degree program and is employed in the state, he will be eligible for up to 40% cancellation of the loan.

Eligibility for National Direct Student Loans is based on need as well as academic standing, and application is made through the Financial Aid Office. Up to $5,000 can be borrowed for undergraduate work and up to $10,000 for combined undergraduate and graduate work. Repayment of the loan begins nine (9) months after separation from school with a $30-a-month minimum payment at 3% interest. There is also the possibility for deferment and cancellation of payments.

PART-TIME EMPLOYMENT

On-Campus and Off-Campus Jobs. Listings are available in the Financial Aid Office for both on-campus and off-campus jobs. Students interested may inquire at the office for information but must apply for the positions themselves.

Work-Study. A financial aid application and financial statement (see section on Student Financial Need) are required in order for a student to be considered for the College Work-Study Program. Under this program students may work part-time during the school term and 40 hours per week during vacation periods. Most of the work opportunities are on-campus and can be related to a student's educational or vocational interest.

STUDENT FINANCIAL NEED

Most student financial aid awards are based primarily on need. A student's need is determined from information supplied on the Parents' Confidential Statement (PCS) or, in the case of students who are independent from parents (see below), from information supplied on the Student's Financial Statement (SFS). Students seeking financial assistance are required to submit a copy of either the PCS or the SFS to the College Scholarship Service, designating the University of Alaska as one of the recipients, by February 1 for the following Fall semester or October 1 for the following Spring semester. The PCS and SFS forms may be obtained from the University, secondary schools, or the College Scholarship Service, P.O. Box 1501, Berkeley, California, 94701.

FINANCIAL INDEPENDENCE FROM PARENTS

For the purposes of student financial aid, a student is considered to be independent from parents if he meets all of the following criteria:

For the calendar year prior to the academic year for which he is applying for aid, and for the year for which he is applying, a student cannot have:
1. been claimed by his parents as a dependent on their income tax return,
2. received financial support in excess of $200 annually from parents, and
3. lived with his parents for an extended period of time (defined as any period exceeding three weeks).

Independent students are required to submit a Student's Financial Statement and an affidavit of independence in order to be considered for financial aid.

Any student who does not meet all three criteria of independence is considered to be dependent and must submit the Parents' Confidential Statement.

PART-TIME STUDENTS

Students who are attending the University of Alaska less than half-time (i.e., enrolled for fewer than six hours per semester if undergraduate students, or for fewer than five hours per semester if graduate students) are not eligible for financial aid.

Half-time students (undergraduates enrolled for six to eleven hours and graduates enrolled for five to eight hours) are eligible to apply for certain types of financial aid: Basic Educational Opportunity Grants, Supplemental Educational Opportunity Grants, College Work-Study, National Direct Student Loans, United Student Aid Fund Loans, Federally Insured Student Loans, and Law Enforcement Education Program grants.

Full-time students (undergraduates enrolled for at least twelve hours and graduates enrolled for at least nine hours) may apply for any type of
assistance for which they meet all other eligibility requirements.

APPLICATION PROCEDURES

Financial aid applications are available from the University or from Alaska high schools. Applications from currently enrolled students are accepted twice each year: before March 1 and before November 1. Applications from high school seniors are accepted once each year (before March 1) and are reviewed only after the applicant's admission to the University has been approved. Students who apply after the deadlines will be considered for aid if there are funds available.

In addition to an application for financial aid a student must file either a Parents' Confidential Statement or a Student's Financial Statement (see section on Financial Independence from Parents). These must be filed a month before the March 1 and November 1 application deadlines to provide time for processing.

One general application may be submitted to apply for any of the following programs: Grants, Scholarships, University Loans, National Direct Student Loans, and Work-Study. Separate applications are required for Bureau of Indian Affairs Grants, Emergency Loans, United Student Aid Fund Loans, Federally Insured Student Loans, Alaska State Scholarship Loans, Law Enforcement Education Program, and Talent Grants.

Questions concerning application forms, specific programs, or selection procedures should be directed to the Financial Aids Office.

The low sun of midwinter casts a soft light over the campus.
Courses in ceramics are among the University's many offerings in art.
DEGREES OFFERED

The University of Alaska, Fairbanks, offers programs leading to the following:

Undergraduate Degrees
- Associate in Arts, A.A.
- Associate in Computer Information Systems, A.C.I.S.
- Associate in Electronics Technology, A.E.T.
- Associate in Mineral and Petroleum Technology, A.M.P.T.
- Associate in Office Administration, A.O.A.
- Bachelor of Arts, B.A.
- Bachelor of Business Administration, B.B.A.
- Bachelor of Education, B.Ed.
- Bachelor of Music, B.Mus.
- Bachelor of Science, B.S.

Professional Degree
- Engineer of Mines, E.M.

Graduate Degrees
- Master of Arts, M.A.
- Master of Arts in Teaching, M.A.T.
- Master of Business Administration, M.B.A.
- Master of Civil Engineering, M.C.E.
- Master of Education, M.Ed.
- Master of Electrical Engineering, M.E.E.
- Master of Fine Arts, M.F.A.
- Master of Science, M.S.
- Educational Specialist, Ed.S.
- Doctor of Philosophy, Ph.D.

ASSOCIATE DEGREES

The associate degree is awarded upon the successful completion of a two-year technical or general program. The degree has its own integrity and for many people it will be their most advanced formal educational experience. For others, it will be the first undergraduate degree and a stepping stone to a baccalaureate program. At least 15 semester hours of the final 30 semester hours for any associate degree must be earned at the University of Alaska. A maximum of 15 semester hours of work completed by correspondence may be accepted toward an associate degree.

General Requirements for A.A. Degree

I. General Education Requirements

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| 6 | Specific Requirements:
| 3 | 1. Written Communication
| | 2. Oral Communication
| 18 | General Requirements:
| | Select three areas below.
| | Complete six credits in each area
| | 1. Humanities
| | 4. Mathematics
| | 2. Social Sciences
| | 3. Natural Science
| | Adm., H.E., Mil., P.E., etc.)

II. Major Specialty

A. Specific Requirements:
(No course used to meet the general education requirements may be used to meet the requirements of the major.)

B. Electives to total:

III. A total of 60 credits is required for graduation.

Requirements for A.A. with Major in Science

A total of 60 credits is required for graduation.

I. General Education

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirements</th>
</tr>
</thead>
</table>
| 6 | Eng. 67, 68 or 111 and 211 or 213
| 3 | Speech |
Degrees

B. General Requirements:
 Humanities ... 6
 Social Science .. 6
 Six credits in one of the following:
 Natural Science, Mathematics, or other 6

II. Major in Science
 Math. 200 or 203 or equivalent 3 or more
 A year’s sequence course in Biology,
 Chemistry, Geology, or Physics,
 plus two semesters in area other
 than that chosen for sequence 14-16
 Approved Science elective (may include
 courses in Mathematics or Applied
 Science such as Engineering,
 Wildlife Management, etc.) 4-6

Courses used to meet the general education
requirements may not be used to meet the requirements
of the major.

For other associate-degree requirements, see the
Degree Programs section.

BACHELOR’S DEGREES

A student must earn in residence at the
University of Alaska at least 24 credits in upper
division courses and at least 30 of the last 36
credits for the degree.

A maximum of 32 semester hours of work
completed by correspondence may be accepted
toward a baccalaureate degree.

A student enrolled in a bachelor’s degree
program may elect to graduate under the
requirements of the general catalog in effect
during the year of graduation or in effect at the
time he originally enrolled in the major,
providing there has not been a time lapse of more
than seven years.

Since English 211 and English 213 are
primarily courses in writing, and are
interchangeable, either one of them will satisfy
the second half of the requirement in written
communication for the baccalaureate degree.
A student who has taken one of these courses before
declaring a major in which the other course may
be considered more appropriate, or a student
who changes his major from a field in which one
of these courses is considered more appropriate
than the other, will not be required to take the
other course.

A student wishing to obtain a second
baccalaureate degree must complete 24 hours of
credit beyond the first baccalaureate degree, i.e.,
a minimum of 154 credits. All general degree
requirements and major requirements for both
degrees must be met.

General Requirements for B.A. Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 111 or equivalent, and English 211</td>
<td>6</td>
</tr>
<tr>
<td>Speech Communications</td>
<td>3</td>
</tr>
<tr>
<td>Major Complex</td>
<td>at least 23</td>
</tr>
<tr>
<td>Minor Complex</td>
<td>at least 12</td>
</tr>
<tr>
<td>Arts and Letters/History Electives</td>
<td>at least 15</td>
</tr>
<tr>
<td>including 5 or more one semester courses totaling</td>
<td></td>
</tr>
</tbody>
</table>

(Majors in history may not include history courses in satisfying this requirement. For majors in the College of Arts and Letters this requirement will be substituted by a requirement of a minimum of 5 one semester courses totaling a minimum of 15 credits outside the College of Arts and Letters. Repeatable courses may be counted only once in satisfying this requirement.)

**Other Electives.......................... remainder of 130

Major Specialties Available for B.A. Degree —
Anthropology, Art, Biological Sciences, Business
Education, Chemistry, Economics, English, Eskimo,
French, Geography, Geography and Regional
Development, Geology, German, History,
Interdisciplinary Studies, Journalism, Linguistics,
Mathematics, Music, Northern Studies, Office
Administration, Peace Arts, Philosophy, Physical
Education, Physics, Political Science, Psychology,
Russian, Russian Studies, Sociology, Spanish, Speech,
Speech Communications, Theatre.

Minor Specialties Available for B.A. Degree —
Alaska Native Languages, Anthropology, Art, Asian
Studies, Biological Sciences, Chemistry, Economics,
Secondary Education, Elementary Education, English,
Eskimo, French, Geography, Geology, German, Home
Economics, History, Journalism, Linguistics,
Mathematics, Military Science, Music, Office
Administration, Philosophy, Physics, Physical
Education, Political Science, Psychology, Russian,
Sociology, Spanish, Speech, Speech Communications,
Theatre.

*A double major, which must be approved by
academic petition, may be completed instead of a
major and a minor. The student must complete 130
credits and satisfy all other general requirements plus
all requirements for both majors.

**The curriculum for each student must include courses
taken in four colleges and eight departments or
programs outside of departments, exclusive of the nine-
credit communications requirement. Courses cross-
listed in a major department and other departments will
be considered as being in the major department in
determining distribution requirements. In those parts
of the University of Alaska statewide system where no
breakdown by colleges and/or department exists, distribution will be achieved by treating disciplines as they are represented in specific colleges, departments and/or programs on the Fairbanks Campus.

General Requirements for B.B.A. Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary Accounting: Acc. 101, 102</td>
<td>6</td>
</tr>
<tr>
<td>English Composition and Literature:</td>
<td></td>
</tr>
<tr>
<td>Enlg. 111 and 211 or 213</td>
<td>6</td>
</tr>
<tr>
<td>Fundamentals of Oral Communications: Sp.C. 111</td>
<td>3</td>
</tr>
<tr>
<td>Behavioral Science: Fsy. 101, Soc. 101</td>
<td>6</td>
</tr>
<tr>
<td>Computer Information Systems: CIS 101</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td>3</td>
</tr>
<tr>
<td>Political Science: P.S. 101 or 102</td>
<td>6</td>
</tr>
<tr>
<td>Economics: Econ. 131, 122, 221</td>
<td>9</td>
</tr>
<tr>
<td>Mathematics: Math. 106, 110, 200,</td>
<td>12</td>
</tr>
<tr>
<td>Natural Science</td>
<td>4</td>
</tr>
<tr>
<td>Elective Credits</td>
<td>0-26</td>
</tr>
</tbody>
</table>

If general credits (i.e., credits other than business and advanced economics) exceed 79, then more than 130 total credits will be required for the degree.

General Requirements for B.S. Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>English 111 or equivalent and</td>
<td></td>
</tr>
<tr>
<td>English 211 or 213</td>
<td>6</td>
</tr>
<tr>
<td>Speech Communication</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics 200 or 203 or Applied Statistics 301</td>
<td>3 or more</td>
</tr>
<tr>
<td>Chemistry, Biology or Physics (minimum of 6 credits each in two disciplines), including 2 credits of laboratory</td>
<td>16</td>
</tr>
<tr>
<td>Social Science (minimum of 3 credits) and Humanities (minimum 3 credits), exclusive of 9-credit communications requirement</td>
<td>15</td>
</tr>
<tr>
<td>Major Complex (see departmental curricula for specific requirements and for Minor Complex, if required)</td>
<td>variable</td>
</tr>
<tr>
<td>Other Electives to bring total credits to</td>
<td>130</td>
</tr>
</tbody>
</table>

Major Specialties Available for B.S. Degree

General Requirements for B.Ed. Degree

B.Ed. in Elementary Education—see page 76.
B.Ed. in Secondary Education—see page 77.

General Requirements for B.Mus. Degree

For requirements for a B.Mus. degree, see pages 102-3.

For specific degree requirements, see Degree Programs section.

ADMINISTRATION OF GRADUATE PROGRAMS

Graduate programs of the Northern Region are supervised by the Provost. His office formulates policies to guide and govern graduate studies.

The Vice President for Research supervises the programs of graduate students who are affiliated primarily with the statewide research institutes of the University; these programs include those in Geophysics, Oceanography and Ocean Engineering, Arctic Biology (Zoophysics), and certain other interdisciplinary topics involving research, instruction, and supervision in the institutes. The WAMI experimental program in medicine also is administered by the office of the Vice President for Research.

Applicants who have doubt about the position of their programs should consult the Provost.

GENERAL REQUIREMENTS FOR GRADUATE STUDY

Graduate study seeks to prepare the student for creative work — for all work that extends the bounds of knowledge, that cherishes and transmits knowledge, and that applies knowledge for the benefit of man. It seeks to give the student deeper insights and better understandings of fundamental principles. The graduate program is shaped to the needs of the individual student and is developed in terms of his experience, academic background, and aspirations. Earning an advanced degree entails more than the satisfactory completion of specified courses; the student must show promise and performance in productive scholarship.

MASTER'S DEGREE

As will be seen under departmental listings, programs leading to master's degrees are offered in the areas of anthropology, biology, botany,
Degrees

business administration, chemistry, civil engineering, creative writing, environmental health engineering, education, electrical engineering, engineering management, English, fisheries biology, geology, geophysics, history, mathematics, mechanical engineering, mineral industry management, mineral preparation engineering, physics, science management, wildlife management, and zoology. Students wishing to enroll for graduate study in any of these fields should obtain an application form from the Office of the Director of Admissions and Registrar. The completed form, official transcripts of all previous college or university work and letters of recommendation should be sent to that office.

In addition, programs leading to master's degrees may be arranged on request in certain aspects of other areas; for example, arctic engineering, economics, land resources, linguistics, etc. Students interested in pursuing studies in one of these or any other discipline not listed should write directly to the Provost.

Several cross-discipline master's degrees are offered through cooperating departments. For example, the Master of Arts in Teaching is offered with emphasis in the following disciplines: biology, chemistry, elementary education, English, geology, history, mathematics and physics; the Master of Science in general science is offered with emphasis in biology, chemistry, geology, mathematics and physics; the Master of Science is offered in oceanography and ocean engineering. Students interested in obtaining more information about these degrees and their requirements should also write to the Provost.

In general, a student may be admitted to graduate status if he has a bachelor's degree from an accredited institution with at least a "B" average in his major and if his major is deemed suitable for continuation of studies in the field of his choice.

Department heads in fields of interest will determine the adequacy of the student's preparation and whether or not departmental facilities are sufficient for the student's aims. Applications from students whose projected programs do not fall within a department will be reviewed by a Committee for Admissions. Committee recommendations will be transmitted to the student by the Director of Admissions.

As soon as the student is accepted, an advisory committee of not fewer than three faculty members will be set up to assist the student in planning and carrying out his program.

The requirement for a master's degree is a minimum of 30 semester credits, of which a maximum of 12 may be devoted to the thesis. At least nine semester credits, in addition to those earned for the thesis, must be at the graduate level. No lower division courses (100 or 200) are applicable. A maximum of nine semester credits from another institution may be transferred to the University of Alaska and applied toward a degree if approved by the student's advisory committee and by the dean of the college in which the student is enrolled.

B is a minimum passing grade in courses not primarily for graduate students (300 or 400); C will be accepted in courses primarily for graduate students (600) provided a B average is obtained in graduate courses. Such standards are requisite for continuing study toward a master's degree.

A student may be admitted to candidacy for a specific master's degree after he has satisfied all the following requirements: 1) completed at least eight credits of graduate study at the University of Alaska; 2) demonstrated a reading ability of a foreign language, if required; 3) received approval of the provisional title of his thesis, if a thesis is required, and of his program of studies. The candidate must pass a final examination, either written or oral; if a thesis is required, the examination will include a defense of the thesis. The examining committee shall consist of a candidate's advisory committee and one faculty member from outside the candidate's college.

All work toward the fulfillment of the requirements of a master's degree must be completed within seven years.

DOCTOR OF PHILOSOPHY DEGREE

No restrictions are placed on the disciplines that may be studied by students seeking doctoral degrees. There are well established programs in
certain areas of physics, geophysics and geology, while students are commonly accepted in oceanography, zoophysiology, zoology and wildlife management.

Prospective candidates in these or other subject areas should write to the Provost, outlining in some detail their previous training and interests for future study. Each application is reviewed by an admissions committee both in light of the applicant's qualifications and the faculty and facilities available on the campus relevant to the field of projected study.

The degree of Doctor of Philosophy is granted for proven ability and scholarly attainment. There are no fixed credit requirements for this degree at the University of Alaska. It is not the policy to confer this degree upon anyone whose entire academic experience has been at this University.

The student chooses a major line of study and, with the advice of his advisory committee, such lines of study in related fields as are necessary for achievement of a thorough and scholarly knowledge of his subject. With approval of his advisory committee, the student prepares a program for the degree which, including applicable and acceptable work transferred from other institutions, shall represent approximately three full years of study beyond the bachelor's degree.

A grade average of B must be maintained in graduate course work.

Specification of language and/or analogous research tool requirements will be made by the candidate's research committee after full discussion with the candidate. Research tool requirements may include such courses as computer languages, mathematics, law, etc. at the discretion of the committee.

When languages are required, selection and administration of suitable proficiency tests will be under the direction of the graduate committee.

Admission to graduate study does not imply admission to candidacy for a degree. The student should seek admission to candidacy approximately one year before he will have completed the requirements for his doctorate. A student may be accepted as a candidate by his advisory committee after 1) completing the equivalent of two academic years of graduate study, 2) completing at least one semester in residence at the University of Alaska, 3) meeting his foreign language or research tool requirement, 4) obtaining approval by his advisory committee of the title and synopsis of his dissertation, and 5) passing a qualifying examination set by his advisory committee.

The dissertation, which is expected to represent the equivalent of at least one full academic year's work at the University of Alaska, must be a contribution to knowledge.

After submitting the dissertation, the candidate must pass an oral examination supporting his dissertation. The examining committee will consist of a minimum of five members: the candidate's advisory committee supplemented by additional examiners.

All work toward the fulfillment of a doctor's degree must be completed within ten years.

THESES AND DISSERTATIONS

Two copies of the thesis or dissertation, typed and bound (original and first carbon), must be filed in the University library. Departments may require additional copies. All records of work done in connection with the preparation of theses and dissertations are the property of the University and can be released with the permission of the Provost after having been reproduced by the University.

EXTENDED REGISTRATION FOR GRADUATE STUDENTS

A student whose only remaining requirement is the removal of a deferred grade in thesis or special topics must complete graduate extended registration at the beginning of each semester until the deferred grade is removed, since a student who is working toward a higher degree must be registered. In order to extend his registration, the student must complete the appropriate registration form, obtain the approval of the chairman of his graduate committee and the dean of his college, and pay the graduate extended registration fee of $27.00, which is equivalent to the cost of registering for one graduate credit hour. With this completed, the student is considered enrolled for the current semester.
The University of Alaska, Fairbanks, basketball team—the Flying Nanooks—in 1973 won the Pacific Northwest championship of the National Association for Intercollegiate Athletics.
Each student will be held responsible for the regulations of the University as they apply to him.

Advanced Placement — The University of Alaska will grant advanced credit, with waiver of fees, on satisfactory performance in College Board Advanced Placement Tests or other national examinations declared acceptable by individual departments. Advanced placement may also be available, with waiver of fees, in some departments through departmental placement tests given at the time of the student's enrollment.

Such credit is available to enrolled students only after the students have completed one or more semesters at the University.

In the case of the College Board Advanced Placement Tests, a grade of "3" or higher is acceptable for placement. The level of performance required on other departmentally approved tests is determined by the specific department involved.

Attendance — Regular attendance is expected in all classes. Unexcused absences may result in a student being dropped from the course with a failing grade. It is the responsibility of the student to establish to the instructor's satisfaction the validity of an excuse for absence and to work out with the instructor acceptable arrangements for making up missed work.

Class Standing — Class standing is determined on the basis of total credits earned. Students are classified as:

- Freshman: 0-29 credits
- Sophomore: 30-59 credits
- Junior: 60-94 credits
- Senior: 95 credits

Transfer students will be given class standing on the basis of the number of credits accepted by the University. Special students are registered without class standing.

Study Load — Students normally may register for 18 semester hours of credit; for 19-20 semester hours with the approval of the dean of the college; for 21 or more semester hours provided the student's grade point average with a full time study load for the past two semesters is at least 2.75 and he has the approval of the Provost.

For the purpose of computing study loads, non-credit courses are rated the same as credit courses.

An undergraduate full-time student is one who enrolls for 12 or more semester hours of credit. Any undergraduate student who qualifies for entrance and registers for fewer than 12 credits will be classified as "part-time" regardless of his previous standing. A graduate student enrolled in 9 or more semester hours of credit or its equivalent will be classified as full-time.

Any regular student who does not follow a prescribed course of study or curriculum leading to a specific degree will be enrolled as "interim" major. A student with an interest in a specific college, but who has not selected a major from that college, will be enrolled as a "non-major" in the college.

Special students are considered "undeclared" and are not assigned class standing.

Credit-by-Examination — Application for credit-by-examination originates in the Counseling and Testing Center. Most of the examinations covering specific courses at the University of Alaska are provided by the appropriate department. However, a few nationally prepared exams have been accepted for use from the College Level Examination Program (CLEP). In addition to subject examinations, general examinations are available through CLEP and cover broader academic areas.

To be eligible to request a locally prepared credit-by-examination, one must be an enrolled student at the University. One test date is designated each semester and the request must be initiated a minimum of 40 days before the date of the examination. A course in which a student has previously registered as an auditor may not be completed for credit-by-examination. The examination for a specific course is graded P (pass), F (fail) or regular letter at the discretion of the department providing the examination and is recorded as such on the permanent record.

Persons not enrolled at the University are eligible to take the CLEP examinations. These national exams are administered on a specified
Academic Regulations

date each month. A transcript service is available from the Educational Testing Service.

Accepted degree applicants presenting a transcript with acceptable scores on the approved CLEP Examinations from the Educational Testing Service will be granted credit for the appropriate course. The University of Alaska grants six semester hours of credit for each area examination of the general examinations offered through the College Level Examination Program and credit for subject examinations varies. The CLEP general and subject examinations are graded on a credit-no-credit basis and only the examinations passed with an acceptable score are recorded on the permanent record. The general and approved subject examinations are acceptable to challenge general requirements or specific courses, respectively, as directed by the academic departments concerned. A list of the approved CLEP subject examinations may be obtained at the Office of the Director of Admissions and Registrar or at the Counseling Center.

Grading System — Only letter grades appear on the student's record and transcript. Attention is called to the following analysis:

A — An honor grade; indicates originality and independent work, a thorough mastery of the subject, and the satisfactory completion of more work than is regularly required.

B — Indicates outstanding ability and a performance definitely above the average.

C — Indicates a satisfactory and average response to assignments.

D — The lowest passing grade; indicates work of poor quality and does not entitle the student to the recommendation of the University.

F — Indicates failure.

CR—Credit. The Credit-No-Credit option encourages students to explore areas of interest not necessarily related to their academic major. P.E. 100 or one "free" elective may be taken under this option each semester. The instructor will not be informed of the student's status in the course. The student will be given credit toward graduation if he performs at a level of "C" or above. If performance falls below that level, the course will not be recorded on the student's transcript. In either case, the course will not be included in any grade point calculations. If the student later changes his major and the course becomes a requirement, the course will be accepted by his new major department. The student may change from credit-no-credit to regular enrollment status or from regular to credit-no-credit status during the first two weeks of the semester by informing the Director of Admissions and Registrar of his desire to change status.

P—Pass. Indicates passing work and carries no grade point.

S—Satisfactory. Indicates satisfactory completion, is used only for graduate theses and carries no grade points.

I—Incomplete. Given only in cases where the student must do additional work for satisfactory completion of the course and where work already completed is grade C or better; may be given for unavoidable absence or other conditions beyond the control of the student.

The grade for work that is incomplete (I) becomes a failure (F) if the work is not completed by the end of the sixth week following the student's next registration. At the option of the instructor and head of the department offering the course, the removal of the incomplete may be postponed until the next semester in which the course is regularly given.

DF—Deferred. Indicates that the course requirements cannot be completed by the end of the semester; that credit may be withheld without penalty until the requirements of the course are met within an approved time. This designation will be used with courses such as thesis, special projects, etc. that require more than one semester to complete.

W—Withdrawn. Given when a student makes a regular withdrawal from a class. A student may, if circumstances warrant, withdraw from a class any time up to one calendar month prior to the end of the semester. A grade of "W" will be given. Student initiated withdrawals are not permitted during the last month of the semester. The grade of "W" carries no grade points and does not affect the grade point average. The procedure for dropping a class or withdrawing from the University is outlined on the next page.

Grade Points — For the computation of grade points, each credit is multiplied by a grade factor: Grade A by 4, grade B by 3, grade C by 2, grade D by 1, and grade F by 0. A grade point
average 2.00 is required for good scholastic standing.

Honor Rolls — Students who earn at least a 3.5 semester grade point average for no less than 12 credit hours are listed by the Provost on the University's Honor Roll.

Orientation and Placement Testing — All entering undergraduate students are required to participate in the orientation program conducted just before fall and spring semester registration. The purpose of this program is to acquaint the new student with the history, the customs, and the campus of the University of Alaska, and to aid him in the planning of a profitable college career.

The ACT and other placement and guidance tests must be taken before a new student with less than sophomore standing may complete his registration. On the basis of test scores, a student whose background appears to be deficient in English and mathematics may be required to take Engl. 100 or Math 105 or both in addition to the requirements of his chosen curricula.

A student continuing the study of a foreign language begun in high school will be required to take a placement test. If he fails to place at the level appropriate to the amount of his previous language study, he will be allowed to enroll for credit in a course that is one semester below his level. Work more than one semester below the normal level will be considered remedial and, although prerequisite to further study, will carry no credit.

An additional fee of $5 will be charged to students who take the placement and guidance tests at other than the scheduled times during orientation week.

Although transfer students are required to participate in the orientation program, they are not required to take the placement and guidance tests if they have at least sophomore standing. However, if it is felt that the test scores may be of value to the transfer student and his advisors, he may take the placement and guidance tests at the time they are administered to entering freshmen.

Change of Major — A student desiring to change his major may do so only at the beginning of a semester, and must obtain the written consent of the heads of the departments concerned on a change of department and/or major form which may be obtained at the Office of the Director of Admissions and Registrar.

Drop/Add — A student is expected to complete the courses in which he is enrolled. He may, if circumstances warrant, withdraw without grade penalty up to one month prior to the end of the semester. Student initiated withdrawals are not permitted during the last month of the semester. Elective and non-sequiter courses should be dropped first. Students wishing to add courses to their schedules may do so until the end of the late registration period. The fee for student initiated course changes is $1 per course. A Drop/Add card must be obtained from the student’s academic advisor or from the Office of the Director of Admissions and Registrar.

Probation and Academic Disqualification — At the end of any semester of attendance, a student failing to earn or maintain a grade point average of 2.00 may be placed on academic probation. Students who fail to raise their scholastic average after being placed on probation may be disqualified or, under unusual circumstance, may be permitted to continue on probation but may enroll for a maximum of two college level courses in any unit of the University providing they have their program approved by the dean of their college. If a “C” or higher average is obtained in these two courses a student may again enroll as a full-time student. If less than a “C” average is obtained in these two courses, the student may be academically disqualified. A disqualified student will not be permitted to re-enroll in academic programs administered on the Fairbanks campus or in upper division programs at Anchorage or Juneau for one or more semesters, and will be readmitted only upon his presentation of evidence indicating a high probability that he can do satisfactory college level work. The most obvious evidence is the completion of two or more college-level courses with a grade of “C” or higher at another accredited institution or another of the University of Alaska's programs — Community Colleges, Summer Sessions, Evening Division, etc.

Students who are academically disqualified from a baccalaureate degree program may, as high school graduates, enroll in academic programs administered by the Vice President for Public Service if admitted by the appropriate program dean or director.

Total Withdrawal from the University — A student desiring to withdraw from the university
Academic Regulations

must obtain a total withdrawal form from the Office of the Director of Admissions and Registrar.

Academic Petition — Any deviation from academic requirements and regulations must be approved by academic petition. A petition form, which requires the signatures of the student’s advisor, department head, and dean, may be obtained from the Office of the Director of Admissions and Registrar.

Dismissal — A student may be dismissed for cause at any time by the President of the University, after appropriate review.

PRIVACY OF STUDENT RECORDS

Recognizing the need to insure the privacy of individual records, the University releases information only upon permission of students to agencies off campus. Records are available for legitimate on-campus professional use on a need-to-know basis. Information on students is maintained by the following offices: Director of Admissions and Registrar for academics, Counseling for professional reference, Health Services for medical history, and Office of Student Affairs for disciplinary records and extracurricular activities. Academic and personal information is released to other institutions or employers solely upon release by the student. General information only is discussed with governmental agencies conducting standard investigations.

ACADEMIC ADVISING

The University recognizes that academic success is promoted by close personal relationships between faculty and students. To foster this relationship it has established a system of faculty advising which enables the student to become well acquainted with the degree programs available at the University and assures involvement of faculty in assisting the student choosing a course of study.

There are three major divisions of the advising system:

CORE Advising Program — This program is the responsibility of the Provost and is directed by the Director of Academic Advising. The advisors are members of colleges and departments from all disciplines, chosen and recommended by their respective deans.

Students eligible for this advising are entering and transfer Freshmen.

The Director of Academic Advising assigns students to advisors in accordance with the student’s choice of college and department. The advisor functions as an authority on the requirements leading to a degree, to identify students having difficulty with their studies, and to be familiar with services of the University which may be of aid to the student. More importantly, he provides the dependable, consistent, personal contact which individualizes the University for the student.

The advisor maintains a comprehensive file of information on each advisee’s academic progress. This usually includes the student’s program of studies, petitions, grade reports, biographical data, test information and any notes on conferences.

He is responsible for helping the student plan his academic program. This planning is done at least once a semester at which time the advisor approves in writing the student’s program for the coming semester. All changes in programs must be approved by the advisor before the change is made.

Departmental Advising — This program is for students majoring in specific fields and is administered by individual colleges and departments. Each instructor may serve as a Department Faculty Advisor to students assigned to him by the department head or dean. The advisor has the responsibility of guiding the student through departmental and degree requirements.

Students will be entered in the Departmental Advising System after completion of 30 credit hours. A student may elect to remain with the CORE Program if he has not selected a major, until he has completed 60 credit hours. After completion of 60 credit hours, except under unusual circumstances, the student is no longer eligible for the CORE program and is expected to choose a particular college and department for continued advising.

Student Orientation Services — Student Orientation Services attempts to offer specialized advisement for rural and native
students. The staff counselors and part-time student counselors try to make the initial contact with University life as rewarding as possible for the student by helping select realistic course loads and steering the student toward courses which are specially designed to meet his educational needs. Students are rarely assigned to SOS for advisement but rather choose to make use of the program. As a student adjusts to campus life and as he finds an academic area of special interest to him, he is expected to change from SOS advisement to a regular departmental advisor.

GRADUATION

Graduation — The responsibility for meeting all requirements for graduation rests upon the student.

Application For Graduation — In the second semester of his junior year, each student who expects to qualify for a bachelor's degree must file a written application for graduation on a form furnished by the Graduation Division of the Office of the Director of Admissions and Registrar. Each applicant and his major department will receive a written report on his standing upon which to plan the work of his senior year.

Graduation with Honors — Students who obtain a grade point average of 3.5 will be graduated cum laude; 3.8 magna cum laude; and 4.0 summa cum laude provided they meet the honors as well as the general residence requirements.

In order to graduate with honors, students transferring from institutions must have been in attendance at the University of Alaska for at least four semesters with a minimum of 12 credits each semester. All college work attempted, including transfer credits, will be considered when determining a student's eligibility for graduation with honors.

Graduate in Absentia — It is a policy of the University that students who will not be present at commencement submit written requests with justification to graduate in absentia to the Director of Admissions and Registrar.

AWARDS

Listed below are awards which have been established for students who demonstrate outstanding achievement in various fields and activities. Information concerning awards may be obtained from the Office of Student Affairs, from the Department of Military Science, or from the Department of Health, Physical Education and Recreation.

American Institute of Mining and Metallurgical Engineers, Alaska Section
American Society of Civil Engineers, Fairbanks Sub-Section of the Alaska Section
Athletic Letters and Awards
Marion Frances Boswell Memorial Award
Chemistry Department Outstanding Freshmen
Druska Carr Schaible Memorial Award
Fairbanks Garden Club Conservation Award
Fairbanks Weavers Guild
George M. McLaughlin Memorial
Archie W. Shiel's Prize
Sigma Xi Club, University of Alaska
General James Steese Prize
Rex Thomas Memorial Award
Joel Wiegert Award

ALUMNI SERVICES —
CAREER PLANNING
AND PLACEMENT

The office of Alumni Services, Career Planning, and Placement is located in Constitution Hall on the University Campus at Fairbanks.

All graduates and former students who have taken courses for credit at the University of Alaska, including any of its community colleges and branches, who no longer are attending, and whose class has graduated, are eligible to belong to the Alumni Association. There are no dues but members are asked to contribute to the Annual Fund each year. The "Alaskan Alumnus," a quarterly magazine, is published by the alumni office and sent to all alumni members.

Career Planning and Placement is a student personnel service which operates as a division of the office of Alumni Services. The service provides a central search for new or better positions for students and alumni. Employers may notify the office of their need for qualified,
Academic Regulations

university-trained men and women. Arrangements may be made through the placement office for employers to interview students on campus. The office maintains a job-research service which seeks to provide continuous, accurate information regarding current and anticipated employment conditions. All students are encouraged to visit the Placement Office to obtain advice on career planning as early as their sophomore year. They should register for placement assistance and file their credentials in the beginning of their senior year.

The University of Alaska Bookstore offers a variety of merchandise.
GENERAL RESPONSIBILITIES

The University provides services intended to assist students in making their educational careers more profitable and meaningful. While the principal function of the University is to foster the intellectual growth of the student, it is recognized that the social, moral, physical, and spiritual development of the individual are of prime importance. Mindful of its obligation to assist the total development of the student, the University continues to expand its student personnel facilities to meet the need for individualization in the educational process.

The Office of Student Affairs is responsible for coordinating and extending personnel services such as: (a) orientation activities to assist new students adjusting to the privileges and responsibilities of membership in the University community; (b) psychological testing to aid students in finding out more about their academic and vocational potentialities and capabilities; (c) counseling with students relative to their personal or educational problems; (d) financial assistance for students through the administration of scholarships, loans, and part-time jobs; (e) medical attention for students with health problems; (f) the assignment to, and the supervision of, student residence halls; (g) the guidance of student cocurricular activities and organizations; and (h) the promotion of high standards of student conduct.

It is recommended that students release information concerning their participation and performance in university activities for inclusion in their references. Otherwise, reports are written indicating that there is no record of the students' activities at the University, which might be misleading. Students are encouraged to forward personal references for the Office of Student Affairs to keep on file.

STUDENT BEHAVIORAL STANDARDS

Education at the University is conceived as training for citizenship as well as for personal self-improvement and development. When a student enrolls he acquires a special status and prestige and assumes commensurate responsibility as a citizen in the University community. As long as he remains a student he represents the University—whether on or off the campus.

It is the University's policy to provide its students as much freedom of individual expression and action as is consistent with their maximum growth and with the welfare of the University. Students are expected, individually and collectively, to maintain this freedom by the exercise of that self-discipline which is imposed by a sense of social responsibility. Most students find it relatively easy to adjust to the privileges and responsibilities of the University citizenship. For those who find this process more difficult, the University attempts to provide such counsel as the student needs to gain insight and confidence in adjusting to his new environment. In some cases, when a student is unable or unwilling to assume his social responsibilities as a citizen in the University community, the institution may terminate his enrollment.

In order that new students become fully informed of the University's expectations, specific rules and regulations will be announced during the orientation sessions preceding registration for each semester. Printed copies of these rules and regulations are available for the guidance of students in the Office of Student Affairs. To those who live in University residence halls, manuals containing housing regulations will be distributed at the time rooms are occupied.

University regulations are designed to help the student work efficiently in his courses and develop a high standard of character and citizenship. They are not designed to ignore individuality, but rather to encourage students to formulate rules for their own guidance and to develop methods of enforcing the rules.

These regulations, except for those based on state law, have been developed jointly by staff and students. Students charged with infractions are advised in writing and given a full hearing with right of counsel and the opportunity to question witnesses or accusers before either elected or appointed student committees or for...
Student Affairs

the more serious cases the joint Student Faculty Judicial Board. The University subscribes to principles of due process and a fair hearing as prepared by the joint statement of the American Association of University Professors, the U.S. National Student Association, the Association of American Colleges, the National Association of Women Deans and Counselors, and the National Association of Student Personnel Administrators.

STUDENT HOUSING

Because the physical environment of the student during his college years is an important part of his educational experience, the University takes pride in providing the student with carefully planned and supervised modern facilities which help promote maximum educational and social development.

Each residence hall is staffed with a resident advisor and several student advisors. These key people in the residential living environment help create and sustain productive and creative experiences through which students realize a maximum amount of educational, social, and cultural values. The resident advisor is responsible for administration, programming, and counseling within a residence hall. The student advisors are full-time students who are selected to work with the resident advisor in planning and administering an interesting and meaningful social, governmental, and recreational program. All staff members have had considerable experience in group living and group activities.

Student rooms have either fixed or movable furniture. Each student has his own bed, desk, chair, mirror, and drawer and closet space; it is his responsibility to provide all other furnishings, including bedding, pillow, and towels. Animals are not permitted in residence halls; do not bring pets.

In addition, each hall includes a public lounge for entertaining, relaxing, and recreation. Regular custodial service is provided in common areas such as corridors, lounges, and bathrooms.

Only a limited number of headbolt heaters for automobiles are available. All motor vehicles garaged, stored, or used on campus one or more times each week must be registered and bear a University decal. Applications for decals are taken at the Safety and Security Office.

Students bringing guns into the residence halls are required to store them in a central storeroom under staff supervision. There is absolutely no exception to this policy.

All single students under 21 years of age are required to live in a University residence hall during their first and second years on campus unless: (a) they live at home or (b) they have special permission from the Head of Student Housing in accordance with University policy. Graduate students and upperclassmen are given preference over new students in the assignment of single rooms. Hall reservations are made on a first come, first served basis provided application and deposit requirements are complete. Specific room assignments will be received upon a student’s arrival at the hall.

The University reserves the right to reassign individuals to different rooms, halls, apartments, and dining halls at any time in the event such reassignments are determined to be necessary.

FOOD SERVICE

Each occupant of an undergraduate residence hall is required to buy a meal ticket for cafeteria meals. Meal tickets do not include vacation periods which occur during the semester. Full payment for a semester’s meal ticket is required at registration time. The first meal covered by the meal tickets is the first day of upperclass registration.

All members of the undergraduate residence halls are required to contract for their meals both semesters at one of the University commons. Breakfast, lunch, and dinner are served daily throughout the school year. Although meal service continues during the Thanksgiving, Christmas, and spring recesses for the benefit of those students who remain on the campus at those times, the cost of meals during such periods is not included in the board contract.

In order to provide students with meals of high quality at minimum cost, it is essential that the staff be able to plan its food purchases and preparations for relatively constant numbers. Therefore, it is not possible to provide special diets or to give refunds for meals missed, except as approved by the Head of Student Housing in cases of prolonged illness, University-sponsored activities where meals are not provided, or other unavoidable absence.
RESIDENCE HALLS

The Student Housing Office is located in the main lounge complex which joins the Moore, Bartlett, and Skarland residence halls. This office is staffed with four full-time staff members, the Head of Student Housing, the Assistant Head of Student Housing, an administrative secretary, and a bookkeeper. During the academic year the office is open from 8:00 a.m. to 5:00 p.m. During the registration period at the beginning of each semester the office is open extended hours.

Andrew Nerland Hall houses 92 men in double and single rooms on its four floors. First occupied in 1953, Nerland Hall is named for a pioneer Fairbanks merchant, long-time member of the Board of Regents, and president of the Board from 1935 until his death in 1956.

John E. McIntosh Hall, completed in 1956, has double and single rooms for 86 men. This four-story building is named for a former president of the Board of Regents.

Wickersham Hall, completed in 1957, is a three-story residence for 88 women. It has single rooms and suites with four women sharing each suite, which consists of two sleeping rooms, a study, and a lavatory. This hall is named for the late Judge and Mrs. James Wickersham. Judge Wickersham introduced into Congress the bill that created the University of Alaska, and Mrs. Wickersham served on the Board of Regents.

Morton Stevens Hall, completed in the fall of 1958, is a four-story coeducational unit with accommodations for 63 men and 33 women in double and single rooms. This hall is named for Morton Stevens, who was president of the Board of Regents from 1921 until 1932.

Austin E. Lathrop Hall, a coeducational unit completed in 1962, houses 100 men in double rooms on four floors, and women on the fifth floor. The building is named for a prominent Fairbanks businessman whose interests throughout Alaska were many and varied. Mr. Lathrop served as a member and later as vice president of the Board of Regents during the period from 1932 until his death in 1950.

Ivar Skarland Hall, completed in the fall of 1964, provides double and single room accommodations for 138 women. The study-bedrooms are located around a central core area containing lounge, sewing rooms, ironing rooms, T.V. lounge, and shower facilities. The hall is named for Ivar Skarland, long-time professor of anthropology at the University.

Terris Moore Hall, a coeducational unit completed in 1966 and named for the second president of the University, is an eight-story building containing both single and double rooms. Capacity of the building is 322 students. Facilities in Moore Hall are similar to those of its companion halls — Skarland and Bartlett. These three units, with the Hess Commons, comprise a living center for men and women on the hill to the west of the president's residence, overlooking the Tanana Valley.

E. L. Bartlett Hall is a high-rise, coeducational residence hall which houses four floors of men and three floors of women. Opened to occupancy during the fall of 1969, the eight-story residence hall was constructed at a cost of $2.9 million. Bartlett Hall is the central building in the student housing complex that includes Moore Hall and Skarland Hall. The hall was named for E. L. "Bob" Bartlett, who served for 24 continuous years as the Alaskan delegate to Congress and as U.S. Senator.

GRADUATE STUDENT HOUSING

The Modular Units consist of 29 one-bedroom units completed in the fall of 1970. The units are located on the south slope behind Lathrop and Stevens halls facing the Alaska Range. All units are furnished except for personal items such as dishes, utensils, and bedding. Graduate students are given first priority for assignment to these living units. The University reserves the right to convert these units to married student housing if the demand is greater for that use.

MARRIED STUDENT HOUSING

Married student housing is provided in several areas. Walsh Hall, completed in 1959, has accommodations for couples with no more than one child. This spacious building contains 12 furnished apartments consisting of a living room-kitchen, bedroom, and bath. The building is named for the late Michael Walsh of Nome, who was a long-time member of the Board of Regents.

Harwood Hall, completed in the spring of 1964, was named for the late Boyd Harwood,
Student Affairs

former member of the Board of Regents. The building houses an additional 36 married student couples or families. All apartments are furnished except for personal items such as dishes, utensils, and bedding.

A new married student living complex, consisting of 72 one-, two-, and three-bedroom apartments, opened in the fall of 1972. All apartments are carpeted and furnished, with individual parking. Located on the north edge of the campus, the two- and three-bedroom apartments are each equipped with washer-dryer, while common laundry facilities serving four apartments each are provided for the one-bedroom units.

RESIDENCE HALL APPLICATION PROCEDURES

Applications for student housing will be mailed to all students with their notification of acceptance from the Office of the Director of Admissions and Registrar. Student rooms cannot be reserved until the student is accepted by the University, through notification from the Office of the Director of Admissions and Registrar. Continuing students may reserve rooms during the spring semester for the fall semester providing they have not been disqualified for scholastic or disciplinary reasons by the University. After being accepted and in order to secure student housing, the student should complete the housing-board contract and mail it immediately to: Head, Student Housing, University of Alaska, Fairbanks, Alaska 99701 with a $50 reservation and damage deposit. Confirmation for student housing is not assured until the student receives written notification from the Student Housing Office. Specific room assignments will be made after August 15. Spring semester assignments are made as space becomes available. The contract for single student housing in undergraduate residence halls is for room and board. The contract for married student housing does not include board.

The housing-board contract is in effect from the date of signing to the end of spring semester, subject to terms indicated thereon. Students are expected to pay for the entire semester during registration; however, installment payments may be arranged through the Student Financial Aids Office.

Contracts are voided only if a student does not attend the University full time, cancels his contract prior to August 15, or is released by the Head of Student Housing because of marriage, health reasons, or other emergencies as deemed appropriate.

Room rental covers all lounge, recreation room, storage room, laundry room, and local-telephone privileges. Students may remain in the residence halls during vacation periods, but during the Christmas holidays they may be moved to one central location.

STUDENT HEALTH CENTER

Preventive and educational, as well as protective, health services are the concern of the University and are administered by the staff at the Student Health Center located in the Health and Safety Building. Health counseling and limited medical services are available on campus from qualified health professionals who strive to maintain a "family physician" type of medical program. Services include outpatient, inpatient, and emergency care to the fullest extent of staff and facilities. Only those students who have paid the student health fee and have a physical examination record on file are eligible for services at the Student Health Center.

The responsibilities of the Student Health staff are varied. The main objectives are to review mandatory health examinations for new students, maintain an accurate medical inventory on all full-time students, provide follow-up care on medical conditions as needed, provide outpatient service during the day, provide 24-hour infirmary care and emergency coverage, supply information concerning health insurance coverage, and coordinate the various health programs. Under the supervision of the Head of Student Health, these policies are designed to maintain a state of optimum health, both physical and emotional, among the students.

Students receive special rates for mandatory health insurance which provides hospital, medical, and surgical benefits. The coverage is extensive, inexpensive, and compulsory for all students carrying seven or more hours and under the age of 26 years. For all students over 26 years of age it is optional. It is designed to supplement, but not to replace, Health Service care. Brochures
containing details of the policy are available at the Health Center.

COUNSELING AND TESTING

The office provides professional counseling services and specialized testing services for all regularly enrolled students.

Educational Counseling — Each student who has declared a major is assigned a faculty advisor who assumes special responsibility for the student’s welfare and helps him plan his academic program. The student who is uncertain of his choice of an academic major is assigned an interim advisor until a definite academic goal is chosen. Students who wish information or help with regard to the selection of a major academic field should avail themselves of the counseling and testing services offered by the University.

The Department of Counseling and Testing assists students who fail to meet the scholarship standards of the University, who need help to discover academic weaknesses, and who need help in developing adequate study skills.

Vocational Counseling — The counseling and testing staff assist students in self-appraisal of their unique interests and aptitudes and in their search for vocational goals. Psychological and vocational interest tests are used as needed. A library of vocational information is maintained and each academic department has additional information pertinent to its field.

Personal Counseling — The student may meet with professionally trained and experienced counselors individually and/or in groups to discuss adjustment problems of a personal nature. Students who encounter normal uncertainties and stress which interfere with their ability to succeed, i.e., difficulty in social relationships, indecision regarding the draft, personal indecision, and moodiness, may find it helpful to talk with a counselor. All interviews are private and the discussions are kept confidential. The student may apply in person for these services. Student contacts with the counseling service are usually voluntary, although individuals may be referred to the Counseling Center by faculty and other University personnel.

Testing — Some tests are required of all new students with less than sophomore standing.

The required tests include the test battery prepared by the American College Testing Program. If applicable, a Mathematics Placement Examination and Foreign Language Placement Test are available.

To assist students in self-appraisal, a number of other instruments are provided. Vocational interest inventories, scholastic aptitude tests, achievement tests, and personality inventories are available with interpretation given by members of the counseling staff.

In addition to the above services, special nationwide testing programs are administered by the Department of Counseling and Testing. Students who intend to proceed with advanced study and who are required to take the Graduate Record Examination, the Law School Admission Test, the Medical School Admission Test, or similar tests, may arrange for these tests in the Counseling Center.

STUDENT ORIENTATION SERVICES

In response to the needs of students from rural areas of Alaska and students whose cultural background is different from that of the majority of the campus student body, the University has developed a program called Student Orientation Services. The primary concern of this program is helping the student make the transition from a small-school and rural environment to the complexities of University life. The program is intercultural in nature in that services are offered to students from all cultural backgrounds. The program is especially responsive to the needs of the Alaska Native student. The initial planning and development of the program has been guided by an advisory board of seven Native University students.

A Student Orientation Services Center offers a place for the student to seek counseling, information, tutoring, and help on many aspects of University life. The program offers help and advice to the student during registration in the fall and spring semesters. Entering freshmen may choose to use SOS staff members for academic advisement until a time when they have found an academic area of special interest to them. A lounge is open for students and faculty in which they may relax and visit.
Student Affairs

Special core courses are being developed in such areas as English, biology, mathematics, sociology, history, and study skills which will aid the student in developing the academic skills necessary for success at the University.

COCURRICULAR ACTIVITIES

In coordination with the Associated Students of the University of Alaska (A.S.U.A.), the student self-governing body, the Office of Student Affairs promotes and provides staff guidance for the development of a wide range of balanced and contemporary cocurricular activities. These activities include special interest groups, clubs, residence halls, governing bodies, and service organizations. A.S.U.A. specifically sponsors the newspaper and most campus social events.

Wood Center, named for the fourth president of the University, William Ransom Wood, provides facilities and services in an attempt to meet a wide variety of needs of both the campus and the local community. The facilities include bowling, billiards, table tennis, art display areas, poster room, ballroom, lounges, meeting rooms, and food service. The services offered in Wood Center include an information operator, an all-campus scheduling office, a central lost-and-found, summer tours, banquets, recreational games, sundry sales, and general information.

To encourage students to maintain a proper balance between their curricular and cocurricular activities, and to protect the best interests of the University, the following code which determines eligibility for participation in all cocurricular activities and organizations has been adopted by the student governing bodies on campus:

1. Officers of cocurricular activities must maintain a cumulative grade point average of 2.00 or higher while carrying 12 or more semester hours of credit.

2. Additional eligibility requirements for members and officers in University organizations and cocurricular departmental activities may be established by the organization or department. Copies of these regulations shall be kept on file with the Office of Student Activities. The responsibility for enforcing eligibility regulations shall rest with the organization or department.
Buildings and Facilities

CAMPUS BUILDINGS

The Bunnell Memorial Building, dedicated to the late Charles E. Bunnell, first president of the University, contains general administrative offices, classrooms, laboratories, and a large lecture hall. It also includes offices of the Cooperative Extension Service.

The Brooks Memorial Mines Building provides space for classrooms, laboratories, offices of the College of Earth Sciences and Mineral Industry, and offices of the U.S. Geological Survey. The four-story structure is dedicated to the late Dr. Alfred H. Brooks, Chief Alaskan geologist of the U.S. Geological Survey from 1903 to 1924.

The Laurence Irving Building, completed in the winter of 1966, provides offices, research facilities and laboratories for upper division classes of the College of Biological Sciences and Renewable Resources. It also houses the Institute of Arctic Biology.

The Eielson Memorial Building contains general classrooms, laboratories, the Home Economics Department, and the offices of the Division of Statewide Services, including Audio-Visual Communications.

The William E. Duckering Building houses offices, classrooms and laboratories of the College of Mathematics, Physical Sciences and Engineering; the Institute of Marine Sciences; the Institute of Water Resources; the Institute of Arctic Environmental Engineering; laboratories of the State Division of Highways; and the Computer Center.

The Ernest N. Patty Building, dedicated to President Emeritus Ernest N. Patty, includes a gymnasium, swimming pool, rifle range, classrooms, and office facilities for the Department of Health, Physical Education, and Recreation and the Department of Military Science. The Beluga, an air-supported dome, houses the hockey rink in winter and tennis courts in summer.

The Museum exhibits thousands of catalogued specimens of Eskimo and other artifacts in mineral, anthropological, ethnological, paleontological, botanical, and natural-history fields.

The Sydney Chapman Building is the former home of the Geophysical Institute. This building contains the herbarium, classrooms, offices, and the Mineral Industries Research Laboratory.

Constitution Hall was completed in 1955 and was the University Student Union Building. It was the site of the convention of territorial delegates which drafted the constitution for the State of Alaska. This building presently provides facilities for a variety of student services and the University Bookstore. The Office of Alumni Services, Career Planning, and Placement is located on the ground level. The basement level accommodates post office and barbershop. The top level (2nd floor) is used by the SOS administration and counselors, the Upward Bound Project and KMPS, the student operated AM radio station.

The William Ransom Wood Center, completed in January of 1972, is named for Dr. William Ransom Wood, fourth president of the University. Total services in the building include food service, cafeteria, eight meeting rooms, ballroom, espresso lounge, and observation platform on the top floor. On the mall level, a multilevel lounge is partially rimmed by display cases. The discotheque with facilities for beverage service is suitable for dancing, art exhibits, receptions, and similar activities. The bowling alley is flanked by the billiards, table tennis, and small-games area. The heart of the center is the information desk which provides for sundry sales, games administration, conference and scheduling, and includes the all-campus telephone operators. Lost and found, darkroom, and other miscellaneous functions are also provided here. ASUA, Wood Center Board, Polar Star, the night manager, the program coordinator, and the Center Director's office are located in this administrative office area. The poster-duplicating room is also in this area. Below ground level there is a commuter facility complete with showers and laundry and drying facilities.

The Hess Dining Commons opened in the fall of 1971 to accommodate the students who live in the Moore, Bartlett, and Skarland complex. Elegantly decorated with wood paneling, the Hess Dining Hall quickly and
Buildings and Facilities

efficiently serves those students living in the complex, making it unnecessary for students to go outside for meals in extreme weather. The dining hall is named for Harriet and Luther Hess.

The University Commons, completed during the summer of 1963, provides beautiful and functional dining, food preparation, and lounge facilities for all students living in residence halls. Although most meals are served cafeteria style, table service for as many as 570 people is provided on special occasions.

The Ernest Gruening Building, new in 1972, houses the College of Behavioral Sciences and Education, Department of Office Administration, the Institute of Social, Economic and Government Research, the Center for Northern Educational Research, the Counseling Center, the Special Orientation Services (SOS) Instructors, and provides much needed classrooms, laboratories, and offices.

The Elvey Building houses the Geophysical Institute, formerly located in the Sydney Chapman Building. It contains facilities for research in arctic and subarctic natural phenomena as well as graduate instruction in geophysics. The impressive six-story structure is located on the west ridge of the campus, overlooking the Tanana Valley and the Alaska Range. The building bears the name of the late Christian T. Elvey, Director of the Geophysical Institute.

The Fine Arts and Humanities Complex provides some of the finest facilities in the country for the fine arts and humanities curriculum. The departmental offices of the College of Arts and Letters are housed in the complex. Features of the building are a 480-seat theater, a soon-to-be-finished 1,072-seat concert hall, vast art studios, and full-sized FM radio and educational television studios.

The Resources Building, opened in 1973, houses offices and laboratories for research programs of the Institute of Agricultural Sciences, the Department of Land Resources, the Department of Forest Soils, the Mineral Industry Research Laboratory, the Department of Mineral Engineering, the U.S. Geological Survey, the U.S. Bureau of Mines, the State Division of Geological and Geophysical Surveys, and the Institute of Water Resources.

ELMER E. RASMUSON LIBRARY

The University of Alaska Library, named for Elmer E. Rasmuson, moved into the new five-level, 10.6-million-dollar Library, Fine Arts, and Humanities complex in the fall of 1969. The library collection consists of more than 350,000 volumes, 11,000 periodical and serial titles, 9,000 reels of microfilm, 465,000 microcards and microfiche, 5,000 maps, and 3,000 phonorecords. Book holdings are available on open stacks for the use of patrons during the 81 hours per week the library is normally open. A separate reserve study area is open until 2 a.m.

Materials are classified according to the Library of Congress system. Current acquisitions are received immediately following publication on the English Language Approval Plan (ELAP) for college libraries.

One of the outstanding features of the new facility is the abundance of study areas and lounges. The seating capacity of 1,000 includes individual study carrels for one-third of the student body as well as closed graduate student carrels and research studies for use by faculty members. The graduate carrels and faculty studies are available upon application to the Director of Libraries.

The main book collection is housed on the fourth and fifth levels. Books in Library of Congress classification A through N and oversize are located on the fifth level, P through Z on the fourth. Graduate carrels, seminar rooms, individual study carrels, and smoking rooms are located on each of these levels. Rooms for using personal typewriters also are available.

The main floor of the new library is on level three and contains the circulation and information desks, the card catalog, the separate reserve book room, the reference area, a student lounge area, and study tables and carrels for student use. The Reader Services department and other library administrative offices are on level three. A special collection of books on Alaska and the polar regions, known as the Skinner Collection, is housed on this level. The bibliography, juvenile, and rare book collections also are located on level three.

The noncirculating collections are housed on level two. These include current periodicals which are on display shelves, bound volumes and
microfilm of journals, and the appropriate periodical indexes. Microfilm readers and coin-operated self-service copy machines are available. A computer printout of all serial and periodical titles held by the library gives call numbers for locating journals, and a serials record file lists complete holdings for each title. Current and back issues of local, national and foreign newspapers are available including the complete run of The New York Times and its indexes. A current collection of college and university catalogs is located here. Two lounges add to the comfort of patrons.

Level one houses the documents collection, the University archives and manuscripts collection, the map room, and the microform room. The documents collection constitutes approximately one-fourth of the total library collection. It contains publications of the U.S. Government, for which the library is a selective depository. These materials are arranged by the Superintendent of Documents classification.

The microform room is adjacent to the documents collection, and houses the Atomic Energy Commission (AEC) research reports, the Educational Research Information Center (ERIC) publications, the Human Relations Area File (HRAF), and other microfilm, microfiche, and microcard material.

The map room is located in the documents area. Available for use are subject area maps of the countries of the world, an extensive collection of Alaskan maps, U.S. Geological Survey maps of Alaska, and a special collection of rare maps.

The University archives and manuscript collection includes University records and special collections such as the Gruening, Bartlett, Rivers, and Dimond papers, records of the Russian American Company 1802-1869, writings of pioneers, and other original Alaskan material.

Interlibrary loan service is made available to students and faculty through the Reader Services Department of the library. The library's membership in the Pacific Northwest Bibliographic Center and Telex communication direct from the library to PNBC make the resources of the large university libraries in the nation available to the University of Alaska.

COMPUTER CENTER

The University of Alaska Computer Center is located in the lower level of the Duckering Building. The Center provides computing equipment for use by students, faculty, and administration. Presently, there are two digital computers, one analog computer, and a few unit record machines.

A small technical staff is available to assist users with their data processing problems. While many campus groups do their own programing, the Computer Center has skilled applications programmers who may be hired on an hourly basis to aid users.

Keypunches are available at the Center for those users who want to punch their own cards. (For those who prefer to have someone else punch their cards, the Comptroller's Office has a keypunching service which is located in the West Wing of the Bunnell Building.) With the exception of the central computer, all of the machines in the Center are on a do-it-yourself basis; however, Computer Center staff members are readily available to demonstrate how these machines operate and are on hand to solve any problems encountered by a user. A user may arrange for an operator for these machines on a charge basis.

The major machines at the Center in the spring of 1973 are:

- **Central Computer** — IBM 360/40 - 128K memory, operating under DOS-POWER. 6-2314 disks and 3 tapes, two of which are 9 track 800 bpi and one is 7 track 200, 556, or 800 bpi. The printer speed is 1200 lines per minute, with 132 print positions. Cards are read at 1000 cards per minute and punched at 300 cards per minute.

- **Small Computer** — IBM 1620 with 40K memory and card reader / punch. Both a 10-inch and a 30-inch drum plotter are attached. Software enables programs written for the 360/40 to control the plotters on the 1620.

- **Analog Computer** — EAI 350, 24 amplifiers and 8 integrator networks, 2 multipliers, 2 function generators, and a small digital control unit. Peripheral equipment includes an 8½-by-11-inch plotter and a 15-inch oscilloscope.

The central computer is staffed 24 hours a day during the week, and as posted on weekends. Computer time may be purchased by anyone using funds allocated through the
Buildings and Facilities

individual colleges or institutes. Currently there is
a buy-a-priority pricing structure on the 360/40
which gives the user the option of selecting a rate
class which determines the rapidity with which
his work will be processed. The three rate classes
are:

Express — twice the Standard rate. Work is
placed directly in the computer's hopper.

Standard rate — First in, first out basis
except for Express interruptions.

Deferred — about 2/3 Standard rate. Work is
run when no other jobs are waiting, usually after
midnight.

The rate structure is adjusted so that user fees
cover the cost of operation. New machines are
added whenever they can be justified on the basis
of cost benefit. Presently under consideration is a
plan to connect the University of Alaska
computing facility to a nationwide computer
network which should greatly expand the
capabilities now available.

Other services of the Computer Center
include:

Time Sharing — Time sharing in the BASIC
language is offered through the Computer
Center on the NOVA computer. In this way this
resource of the Tundra Biome Program is made
available to the campus community.

Remote Access — Remote access facilities
are being developed. These will enable users at
other University locations to enjoy easy access to
the central facility.

Network Computing — Experimental
methods of data communication under
development in 1973 will enable Alaskan users to
have access to several giant computer facilities.
The user will be able to submit his work locally
for processing via satellite on the bigger machines

University dramatic productions may be broadcast by KUAC-TV, Alaska's only educational television station.
Through Public Service the University makes available to many residents of Alaska in their local communities, or through special training programs, academic credit courses, educational and training programs, and special services such as films, radio and television programs, publications, and consultation services. Public Service makes available many of the educational and training programs sponsored in part by the federal government through such legislation as the Economic Opportunity Act, the Higher Education Act, the Manpower Development and Training Act, the Education Professions Development Act, and the Smith-Lever Act.

Special Academic Programs — Academic credit courses are offered at military installations in the Interior and in other communities throughout central and northern Alaska. Summer semesters are conducted at Eielson Air Force Base and Fort Wainwright. Information is available prior to each semester from the Office of the Dean, Division of Statewide Services, University of Alaska, Fairbanks, Alaska 99701.

Correspondence Study — More than forty academic courses are available through the correspondence study program. In addition, a limited number of noncredit courses are available. Courses to meet the expressed needs of Alaskans are emphasized. Further information and catalogs are available by writing to Correspondence Study, University of Alaska, Fairbanks, Alaska 99701.

Mining Extension Program — The Mining Extension Program, supported by state appropriations, consists of four short courses of approximately four weeks each: Basic Prospecting, Geochemical Prospecting, Geophysical Prospecting, and Rock Identification. These courses are offered each year in various communities in Alaska and are open to all persons without regard to previous training or academic qualifications.

The Mining Extension Courses are designed to give basic training in various phases of the mineral industry and to enable prospectors to find and explore ore deposits. An appropriate certificate is awarded to each student who satisfactorily completes a course of study.

For additional information, contact the Mining Extension Program, Division of Statewide Services, University of Alaska, Fairbanks, Alaska 99701.

Fisheries Extension Program — Fisheries short courses, covering various aspects of commercial fishing, are held in commercial fishing centers throughout the State. These courses present information on fishing gear and materials, fisheries technology, hydrology, biology, and pollution. Courses taught in outlying areas of the State include lectures and demonstrations on fisheries biology, fish spoilage, proper care of fish, netting materials used by fishermen, and maintenance of equipment. An appropriate certificate is awarded to students who satisfactorily complete the course.

For information, contact the Fisheries Extension Program, Division of Statewide Services, University of Alaska, Fairbanks, Alaska 99701.

Extension Center in Arts and Crafts — The Division of Statewide Services operates a resident center on campus at Fairbanks for artists and craftsmen who have potential for further development. Young adults are given training in the use of such media as wood, soapstone, and silver. Instruction in basic business methods is also included in the nine-month training program.

For further information, contact the Extension Center in Arts and Crafts, Division of Statewide Services, University of Alaska, Fairbanks, Alaska 99701.

Adult Vocational Programs — In cooperation with the Alaska Department of Vocational Education and other agencies, the Division of Statewide Services provides a number of vocationally oriented training programs for adults. Among the programs available are those directed towards improving skills or competencies in occupations related to the travel industry, computer science, village art craftsmen, and business education.

For information, contact Coordinator for Vocational Education, Division of Statewide Services.
Public Service

Services, University of Alaska, Fairbanks, Alaska 99701.

Civil Defense Education — In cooperation with the Alaska Disaster Office and the U.S. Office of Civil Defense, the Division of Statewide Services makes available a number of training programs related to natural disasters and civil defense for adults and high school students. For information concerning these programs, contact the Coordinator for Civil Defense Education, University of Alaska, Alaska Disaster Office, Anchorage, Alaska 99501.

Nonacademic Credit Short Courses — A wide range of instruction designed for occupational training, recreation and cultural interest provides opportunities for continuing education to persons with a variety of backgrounds of formal education from a few years in elementary school to those with advanced graduate degrees. The program is totally supported by the enrollment fees. The staff attempts to design courses in line with the expressed desires of persons planning on enrolling for the short courses.

For further information, contact Nonacademic Short Course Program, Division of Statewide Services, University of Alaska, Fairbanks, Alaska 99701.

Conferences — Many types of conferences are held on the Fairbanks campus. Conferences are sponsored by the various units of the University or by state, federal, or private groups. To arrange for a conference, contact the Conference Coordinator, Division of Statewide Services, University of Alaska, Fairbanks, Alaska 99701.

Cooperative Extension Service — The program is a cooperative educational service of the University and the U.S. Department of Agriculture. District offices and field staff are located in Fairbanks, Palmer, Juneau, Homer, Anchorage, Nome, Bethel, and Aniak. University Extension specialists and district Extension agents extend the results of research by the University and a broad range of research institutions to the public. Local people are helped to identify and solve problems and to apply the results of scientific research to the improvement of farms, homes, and communities. Work with young people is conducted through the 4-H and Youth programs.

Audiences for Extension programs include both rural and urban residents. Extension educators serve the consumer, as well as resource production, marketing, and agri-business audiences. Extension educators help citizens of the state to plan and to organize for broader economic and social development. Their teaching is carried out informally through television, radio, newspaper, and newsletter media, publications, farm and home visits, special interest meetings, and short courses.

A local-government program is directed toward educating residents of rural communities about the process of incorporation and helping them to achieve an understanding of the roles of elected officials.

The Extension Service has received substantial federal support in recent years to direct expanded educational effort toward improving the nutritional practices of Alaskans. Particular emphasis is focused in this program on the needs of young people and low-income residents. Para-professionals are employed, trained, and supervised in this intensive educational effort with individuals and families.

The Division of Media Services is divided into four departments: Public Affairs and Production, Public Programming, Audio-Visual and Instructional Services, and Engineering and Maintenance. It supports academic and public service instruction throughout the University of Alaska's statewide system. It also operates two broadcast outlets on the Fairbanks campus.

The division can provide professional and technical expertise in the broad area of media and communication to all facets of the statewide University system and to school districts, other political subdivisions, and agencies.

The Audio-Visual and Instructional Services Department is set up to provide many special services to the academic program.

The main branch of the University of Alaska's 16mm film library houses more than 1500 educational films. As a public service function, these films are made available to schools and responsible groups throughout the State. There is a service fee of $3.00 per reel and a catalog is available for $3.00. There is no charge for the University's instructional use of the films.

The Audio-Visual Department provides equipment such as projectors, record players, tape recorders, slide projectors, etc. for on-
It also offers complete photo and graphic services. A cinematographic sector is available. A closed-circuit television studio for 1" and 2" tape modes is available with cameras for various special needs. Assistance with instructional design and seminars is an important and growing part of the instructional services. The Radio-Television Programming Department operates KUAC(FM) radio, 104.7 MHz, and KUAC-TV, Channel 9.

KUAC(FM) is the first educational radio station in Alaska. It serves the University and the greater Fairbanks area as a public service. The station was established in 1962, and now broadcasts seven days a week, year-around, with 10,500 watts of power in stereo. It is a member of NPR — the National Public Radio Network.

In addition to its program service, KUAC also provides valuable experience for students majoring in speech with a broadcast option and for non-majors who also are interested in broadcasting.

A wide range of courses is offered on the University campus at Fairbanks for both graduate and undergraduate credit. Courses are grouped into three- and six-week sessions and are open to: (1) candidates for graduate or undergraduate degrees or (2) unclassified students wishing to take special classes or desiring intellectual enrichment without reference to a degree. A maximum of seven hours of credit may be earned during the six-week session, and three hours during the three-week session. A post-session Workshop on Alaska includes subjects such as anthropology, education, history, natural resources, and other Alaskan topics.

Special summer institutes are often funded by federal and state agencies and private foundations. Summer institutes in Teaching of Languages, Counseling and Guidance, English, and the Teaching of Science and Mathematics have been held. Summer institutes are usually conducted for an eight-week term, and participants may ordinarily earn eight hours of credit. Institutes are usually open to both residents and nonresidents of Alaska.

The summer sessions faculty is composed of members of the regular University teaching staff, supplemented by outstanding visiting professors. Special workshops and institutes open to high school age students are also presented. These include the Music Camp and a Youth Leadership Conference. Other programs of a continuing nature include the annual Homemaker's Short Course.

An extensive recreation program is planned for summer session students. Typical recreational activities include trips to Eskimo and Indian villages, gold panning expeditions, hiking, dances, movies, and a riverboat excursion.

Further information is available by writing to the Office of Summer Sessions, University of Alaska, Fairbanks, Alaska 99701. A bulletin listing courses to be offered is available after March 1 of each year.
Field trips are features of the annual summer Workshop on Alaska. Here, students inspect giant cabbages.
The research programs of the University of Alaska, Fairbanks, take advantage of the University's unique location in the subarctic of Interior Alaska, with easy accessibility to the oceans from the Pacific to the Arctic, accessibility to glaciers and permafrost areas, and a location near the auroral zone, the region in which maximum effects are seen from the bombardment of the earth by charged particles from the sun.

In addition to research which is carried out in the academic departments, the University has several research institutes and associated activities on this campus.

Institute of Agricultural Sciences — The University conducts an agricultural research program, in cooperation with the U.S. Department of Agriculture, as a part of its land grant university functions. The research of the station includes animal science, plant science, economics, and environmental-quality research programs. The Institute has its headquarters and one of its main research centers on the Fairbanks campus. In addition to the director, the professional staff of the center includes one horticulturist, an agronomist, an economist, and an animal scientist.

The Institute is currently conducting 23 research projects statewide as well as a number of special investigations for other agencies and corporations such as the National Aeronautics and Space Administration, the National Science Foundation, the Department of Highways, the Alyeska Pipeline Company, the Atlantic Richfield Company, the State Department of Economic Development, Division of Lands, etc. In addition, it is supervising the master's degree programs of five students, with plans to accept several other graduate students and a postdoctoral fellow.

Alaska Cooperative Wildlife Research Unit — The unit is one of several located at land grant colleges and universities. The Alaska unit is jointly sponsored and financed by the University of Alaska, the Alaska Department of Fish and Game, the U.S. Fish and Wildlife Service, and the Wildlife Management Institute. The unit provides technical and professional training in wildlife management, research, education, and administration. The research program of the unit includes ecological and management investigations of big game, waterfowl, marine mammals, furbearers, and upland game species, and often requires close collaboration with biologists of the Alaska Department of Fish and Game, the U.S. Fish and Wildlife Service, and other resource-management agencies.

Graduate work leading to advanced degrees in wildlife management may be performed at the unit in cooperation with the Department of Wildlife and Fisheries.

Institute of Arctic Biology — The Institute was established in 1963 following the recommendations of a national committee of biologists for studies of life in the special climates of arctic and subarctic regions. To an initial component in zoophysiology have been added programs in human ecology and zoochemistry, and further components in plant physiology, biophysics and microbiology are being developed. The staff of about 100 persons, including some dozen doctoral candidates, encompasses biological specialities ranging from biophysics and biochemistry through physiological and human ecology. The Institute is located in the Laurence Irving Building for bioscience which provides a variety of technical and instrumental facilities and services. Special field sites include the contiguous 40-acre Experimental Biological Campus Reserve, the Cantwell Reindeer Station near Mt. McKinley Park, the Gambell Station on St. Lawrence Island in the Bering Sea, the Homer and Halibut Cove shore stations on Kenai's Kachemak Bay, and the alpine tundra site at Eagle Summit. Interdisciplinary Ph.D. programs can be arranged in various subject areas for qualified applicants who usually enter with a M.S. degree or its equivalent in graduate course work. Visiting scientists from other states and countries are welcomed with some six to ten in residence in a given year.

Institute of Arctic Environmental Engineering — The purpose of the Institute is to (1) gather information necessary for the solution of arctic and subarctic engineering problems, (2)
Research

perform engineering research where required, (3) provide challenging problems and a stimulating environment for graduate student research, and (4) assist in the development of the arctic regions be providing engineering data and trained personnel for up-to-date economical applications of science to specialized human needs.

Based at the Fairbanks campus, under state, federal, and industrial sponsorship, the Institute carries out engineering projects in the laboratory and at various field sites. Typical recent programs dealt with naturally powered refrigeration (St. Lawrence Island), arctic roads (Prudhoe Bay test road), pipelines (Barrow), and sea ice (Arctic Ocean). Most professional staff members hold joint appointments as University faculty members.

Geophysical Institute — The Institute was opened in 1949. It is now housed in the C.T. Elvey Building on the West Ridge of the Fairbanks campus. The present staff numbers approximately 170, including some 30 graduate students who are employed as research assistants. Financial support is obtained mainly from federal agencies. The research program deals with phenomena that can best be studied at high latitude or which present special problems in Alaska. Programs are established in upper atmospheric physics and chemistry, the aurora, the earth's magnetic field, radio communications, solar-terrestrial physics, meteorology, glaciology, seismology, volcanology, and several fields of geology and geochemistry. An important aspect of much of the work is the application of existing knowledge to polar problems — for example, improving radio communication services in the arctic, assessing the earthquake risk in Alaska, reducing the effects of ice fog and air pollution, and providing advisory services to local government.

Research facilities include the Ester Dome Observatory for auroral studies, the radio transmitter Sheep Creek Station, the Chena Valley Radio Facility, the Poker Flat rocket range, a large incoherent-scatter radar, a potassium-argon geochronology laboratory, and an electron microscope laboratory. In addition to these local facilities, the Institute uses many field stations throughout Alaska such as the Katmai station, the Augustine volcano station, the McCall Glacier station, the network of seismic sites, and the meridian chain of optical and magnetic sites. The Institute's library and archives offer an excellent coverage of geophysics. Specialized technical shops provide services in electronics, machine work and carpentry, photography, drafting, data processing, and digital computing.

Institute of Marine Science — The Institute of Marine Science was established in 1960 by the Alaska State Legislature for the purpose of advancing oceanographic knowledge with emphasis on problems of the northern regions. Included in this broad scope is a graduate program of education and research in basic biological, chemical, geological, and physical oceanography and applied areas.

The present staff of about 100 personnel includes 30 faculty members and 30 graduate students with specialties distributed among the natural science disciplines encompassed by oceanography. Financial support for research is obtained mainly from federal sources. In practicing an interdisciplinary approach to applied problem-solving, the Institute has undertaken such programs as baseline environmental studies at both ends of the proposed trans-Alaska pipeline (on the Colville River Delta on the Arctic Ocean and in the Port Valdez prospective terminus area), siting of the effluent discharge system for the Collier Carbon Urea Plant in Cook Inlet, development of aquaculture in fjord systems, and advisory services to marine-oriented industries and agencies. Advanced degrees at both the M.S. and Ph.D. level are offered through the Oceanography and Ocean Engineering program in cooperation with the College of Mathematics, Physical Sciences, and Engineering.

Research facilities include Fairbanks Campus laboratories in the Duckering Building and a coastal laboratory and oceanographic support station at Seward. In addition, field stations are situated at Izembek Lagoon (Cold Bay — Aleutian Area), on the Colville River Delta, and at Point Barrow in cooperation with the Naval Arctic Research Laboratory. The Institute operates the 85-foot modern oceanographic Research Vessel Acona, the 88-foot power scow R/V Ursa Minor, and several small auxiliary craft. Scientists are invited to request permission to work in residence.

Mineral Industry Research Laboratory — The 1963 Alaska State Legislature authorized the
establishment of a mineral industry research program at the University of Alaska. The purpose of the laboratory is to conduct appropriate applied and basic research in various areas of the mineral industry that will aid in the further utilization of Alaska's mineral resources. Research is conducted utilizing facilities of the University and is coordinated with graduate student academic programs.

Work so far has included studies of the geology and mineral deposits of the state, computer applications in exploration, feasibility studies for various Alaskan minerals, beneficiation of Alaskan ores, geologic mapping of areas of economic interest, and development of a data storage and retrieval system for Alaskan mineral deposits.

The Naval Arctic Research Laboratory (NARL) — The Naval Arctic Research Laboratory is operated by the University of Alaska under contract with the Office of Naval Research. It was established in 1947 to provide facilities and logistic support for research in the Arctic regions. Throughout its history, the NARL has supported hundreds of scientists and investigators from leading universities and institutions.

The main laboratory facilities are located at Barrow, Alaska. In addition, the NARL operates a network of field stations at various locations on the north slope and on the Arctic Ocean ice pack. A permanent ice station — Fletcher's Ice Island, or T-3 — has been in operation in the polar ice pack on a year-round basis since 1962.

Center For Northern Educational Research — Research and program development in education was initiated in the winter of 1971 by establishment of the Center for Northern Educational Research by resolution of the Board of Regents. The Center, an educational policy analysis, research and program development institute, has the following purposes:

1. The analysis of long-range goals and policies of public education in cooperation with state, local, and federal educational agencies, legislative bodies, Native Associations, educational associations, and related governmental agencies.

2. The provision of a forum from which the Native population may join with formal educational agencies and other units of government in the development of cross-cultural educational programs.

3. The identification, ordering, and promotion of promising means for improved educational programs.

4. The design of research projects appropriate to new educational concepts.

5. The development of educational demonstration projects and their field testing.

6. The rendering of assistance to operating educational agencies to implement newly developed programs.

Current programs consist of long-range educational policy and goal analysis in cooperation with the State and Bureau of Indian Affairs, research and materials development in bilingual education, the Allakaket Learning Center experiment, the English as Second Language program for village schools, satellite-transmitted educational program development, Native studies curricula development, The Alaska Rural School Project orientation program, development of programs for the State Regional Boarding and Dormitory Schools, Alaska Native Language Program development, design of educational specifications for the State's new small high school program, development of a training manual for State-Operated School System's advisory school boards, and design and execution of regional workshops for the School Desegregation Program.

Institute of Social, Economic and Government Research — ISEGR was established in 1961 by the Alaska State Legislature for the purpose of conducting interdisciplinary policy- and problem-oriented research in the social sciences and related fields. Research interests include economic planning and development, utilization of natural resources, human ecology, educational needs and problems of the state, governmental institutions and political processes, community organization and development, communications, environmental policy, and the political, sociological, and psychological dimensions of culture change. While concentrating primarily on Alaska, ISEGR work and interests also extend to northern Canada, the North Pacific Basin (including Japan and Siberia), and the arctic circumpolar region.

In addition to research directed toward socioeconomic problems, ISEGR carries out a broad-scale program of technical assistance to public and quasi-public agencies, collects and
Research
disseminates statistical data and other information on Alaska's population and economy, and otherwise serves the needs of the general public. The institute has a multidisciplinary professional staff; it also utilizes other university faculty and students, as well as professionals from other universities, in its research and service activities.

ISEGR's publication series includes The Alaska Review of Economic Conditions, ISEGR Reports, Occasional Papers, and Research Notes. Reports, books, and other publications are distributed directly by the institute, sold in bookstores, and made available nationally through the University of Washington Press.

Institute of Water Resources — The Institute of Water Resources was established in 1965 to carry on an integrated program of research in problems dealing with the water resource environment of Alaska. The studies completed by the Institute have encompassed many water resource areas, including: waste treatment, arctic hydrology, water quality management, biological effects of pollution, water resource economics, thermal pollution, and hydrodynamics. The current interests of the professional staff include: physical, chemical, and biological waste treatment in cold climates; the hydrology of arctic regions with special emphasis on techniques which are useful in sparse data regions; the effects of thermal discharges into arctic streams; environmental planning in developing recreational areas; the effects of urbanization of watersheds; the environmental effects of development of lakes and streams; and the pathways of pollutants in the natural water system. The Institute's laboratories and offices are available to interested graduate students who desire to work in problems dealing with the water resource environment. The present staff of twenty-five includes fifteen graduate students who are completing their research program in cooperation with the various academic colleges on the Fairbanks campus. The professional staff maintains a vigorous interest in graduate and undergraduate teaching and, for the most part, has joint appointments with one or more academic departments.
State and Federal Agencies on Campus

Arctic Environmental Research Laboratory — This multi-million-dollar facility is a research laboratory for the U.S. Environmental Protection Agency. It was formerly called the Alaska Water Laboratory. The Laboratory conducts research on environmental problems in cold climates. Water-related problems account for most of the research underway; however, air pollution and solid waste management needs are also part of the Laboratory mission. The AERL also administers the Alaska Village Demonstration Project, which was authorized by Congress, to demonstrate a central facility for safe water supply, bathing, laundry, and sewage disposal in one or more Native villages in the State. This federal laboratory, although not affiliated with the University of Alaska, is part of the growing arctic research effort on the Fairbanks campus of the University of Alaska.

Arctic Health Research Center — The Arctic Health Research Center (AHRC) of the Public Health Service, U.S. Department of Health, Education and Welfare, was established in 1948 as the first permanent research facility in North America devoted to the full-time study of health problems in low-temperature environments. It has pioneered in expanding knowledge of factors which influence human health and adaptation in northern latitudes and has gained international recognition for its contributions in several fields. The center is located on the West Ridge of the Fairbanks campus. The AHRC consists of three main branches: Biomedical Sciences, Environmental Sciences (engineering), and Behavioral Sciences, and includes a reference library containing more than 30,000 cataloged items pertaining to the fields of public health, medicine, and related subjects. A wing equipped with cold chambers and animal isolation facilities accommodates studies of human physiologic and pathologic processes under simulated arctic conditions, and the investigation of diseases transmittable from animals to man, such as rabies and hydatid disease.

Branch of Alaskan Geology of the U.S. Geological Survey — This branch conducts a program of geological exploration and research in Alaska. Some of the functions are aerial geologic mapping studies and evaluation of metallic, nonmetallic, coal, and oil deposits; regional studies of structure and stratigraphy; detailed studies of selected type-areas; application of geology to engineering and related problems; and research in the use of new geologic methods. The Alaskan maps and geological reports are available to the public for use in the office.

College Observatory (Formerly listed as U.S. Coast and Geodetic Survey) — The College Magnetic and Seismological Observatory is operated by the Environmental Research Laboratories of the National Oceanic and Atmospheric Administration, with the main facility on the West Ridge of the Fairbanks Campus and an outpost facility near Farmer's Loop Road. Originally constructed in 1947, the observatory has expanded to 19 buildings and operates various instruments that continuously gather data for studies in the fields of geomagnetism and seismology. Prior to 1948 the magnetic observatory was at a different location on the Fairbanks campus. From 1941 to 1946 the observatory was operated by the Department of Terrestrial Magnetism, Carnegie Institution of Washington, in cooperation with the University of Alaska, and then by the U.S. Coast and Geodetic Survey until 1948. The piers used for the magnetic instruments from 1941 to 1948 were the same ones that were used for the Second International Polar Year (1932-1934). The operation of the seismic equipment dates back to 1935. The general mission of the observatory is to produce accurate and comprehensive data in the field of geomagnetism and seismology, and to cooperate with other scientists and organizations in making studies in various scientific disciplines, within the capability of personnel and facilities. The observatory monitors seismic and magnetic activity 24 hours a day. It is part of the Pacific Seismic Sea Wave Warning System with headquarters in Honolulu, Hawaii, and the Alaska Seismic Sea Wave Warning System.
State and Federal Agencies

whose center is at Palmer, Alaska. The facility plays a major part in keeping the people of Alaska informed of current earthquake activity and informing scientific organizations of the occurrence of major world magnetic events. The observatory is also responsible for overseeing the operation of the Barrow Observatory at Point Barrow in cooperation with the University's Naval Arctic Research Laboratory.

Institute of Northern Forestry, U.S. Department of Agriculture — The Institute is a unit of the U.S. Forest Service, Pacific Northwest Forest and Range Experiment Station. Research is focused upon understanding the ecology of, and developing methods for managing, Alaska's boreal forests. Programs are underway to determine the succession of boreal forests and the effects of fire on soil, water, flora, and fauna. Field work is conducted throughout the boreal forests in Alaska. The 12,500-acre Bonaza Creek Experimental Forest, located 23 miles from the Fairbanks campus, is a convenient research location for Forest Service and University scientists.

State Division of Geological and Geophysical Surveys — The central headquarters and laboratory of the division are located on the campus in the Resources Building. A staff of 22 is located there, including mining geologists, an engineer, and mineral laboratory analysts. The laboratory is for assay and analytical services to miners and prospectors. The geologists and engineer carry out economic geological field mapping and examination of mining prospects, and supply technical advice and assistance to prospectors and mineral exploration companies. An active Kardex file of mineral occurrences and mining claims is maintained. Monthly bulletins, periodic reports, and information circulars are published to help keep the mining industry up-to-date. The division also works in close cooperation with faculty members in related fields to further encourage and assist the development of mineral resources in Alaska.

State Highway Testing Laboratory — The Alaska State Division of Highways operates a state materials laboratory in conjunction with the Department of Civil Engineering. The State provides equipment and personnel for routine testing of highway materials and for highway research.
Academic Colleges

COLLEGE OF ARTS
AND LETTERS

Walter J. Mueller, Dean

The humanities diversify the quest for knowledge in an era of specialization. Examining what men have thought and expressed, they keep knowledge current, expanding and general. Technique distinguishes them from subjects primarily using the empirical method of science, for there are truths which transcend verification. The study of languages breaks cultural fetters, directed reading builds appreciation, exposure to the fine arts quickens sensibility; and all language, literature and the arts collaborate to make knowledge prevail and discovery imminent.

Undergraduate Degrees — The College of Arts and Letters offers the Associate in Arts degree with a major in Liberal Arts, the Bachelor of Music degree, and the Bachelor of Arts degree with majors in Art, English, French, German, Inupiaq Eskimo, Journalism, Linguistics, Music, Peace Arts, Philosophy, Russian, Russian Studies, Spanish, Yupik Eskimo, Speech, Speech Communications, and Theater. The college also offers minors for the Bachelor of Arts in these subjects.

Graduate Degrees — The College of Arts and Letters offers the Master of Arts degree in English and the Master of Fine Arts degree in Creative Writing. Students also may earn an M.A. or M.F.A. degree in other fields through an interdisciplinary program. The Master of Arts in Teaching is also offered.

Alaska Native Languages Program
Professor and Chairman: Michael E. Krauss
Assistant Professor: E. Irene Reed
Lecturer: James Nageak

Department of Art
Department Head and Assistant Professor: Glen C. Simpson
Professor: Helmut Van Flein
Associate Professor: L. Stanley Zielinski
Distinguished Associate: Fred Machetanz
Assistant Professor: Terence T. Choy

Department of English
Department Head and Associate Professor: I. June Duncan
Professors: Gertrude G. Rasche, Charles J. Keim
Associate Professor: John W. Bernet
Assistant Professors: George R. Allen, Russell Anderson, Shigeo J. Aso, Russell L. Currier, Mary H. Slotnick, Russell Tabbert, Michael Travis
Instructors: Anne San Chez, Sarah Isto, Patricia Sheehan, David Stark

Department of Journalism
Department Head and Professor: Jimmy Bedford
Professor: Charles J. Keim
Assistant Professor: Evan B. Smith

Department of Linguistics and Foreign Languages
Department Head and Professor: Bruce R. Gordon
Professor: Walter J. Mueller
Associate Professors: Wolf Hollerbach, Louis L. Renner
Assistant Professors: Angel B. Chamorro, Joseph Brenckle, Jang Koo, Gunther Matschke, Monique J. Pourny

Department of Music
Department Head and Professor: Charles W. Davis
Professor: Jean-Paul Billaud
Associate Professors: Greeta K. Brown, Duane J. Mikow
Assistant Professors: Kurt Pasch, Gordon B. Wright
Instructors: Larry Farr, David Stech
Lecturer: Paul Rosenthal
Academic Colleges

Department of Philosophy

Department Head and Professor: Rudolph W. Krejci
Associate Professor: Walter J. Benesch

Department of Speech, Drama, and Radio

Department Head and Assistant Professor: Walter G. Ensign, Jr.
Professor: Lee H. Salisbury
Assistant Professors: John T. Duncan, Theda Sue Pittman, Donald P. Upham
Instructors: Philip Backlund, Mark E. Bergeson, Shelia Hood Herriott

COLLEGE OF BEHAVIORAL SCIENCES AND EDUCATION

Charles K. Ray, Acting Dean

The College of Behavioral Sciences and Education provides students an opportunity to develop an understanding of man in relation to his social, psychological, and cultural background. Such knowledge serves to broaden the student's concept of life and conditions of society and to provide a foundation for service in specific professional fields.

Undergraduate Degrees — The college has programs that lead to an Associate in Arts degree in Early Childhood Development and to Bachelor of Arts degrees in Anthropology, Physical Education, Psychology, and Sociology. The Bachelor of Education degree is awarded to students majoring in Education. The Bachelor of Science degree is awarded to students majoring in Anthropology, Home Economics, Physical Education, Psychology, and Sociology.

Graduate Degrees — Master of Arts in Anthropology; Master of Arts in Teaching; Master of Education; and Educational Specialist.

Department of Anthopology

Department Head and Assistant Professor: John P. Cook

Associate Professor: William J. Loyens
Assistant Professors: Anne D. Powers, W. Roger Powers

Department of Education

Department Head and Associate Professor: Dana C. Moore
Professor: Joan B. Clutts, Arnold A. Griese
Associate Professors: William K. Pennebaker, John L. Turner
Assistant Professors: Raymond J. Barnhardt, Franklin J. Gold, Lillian P. Stinson

Department of Health, Physical Education, and Recreation

Department Head and Associate Professor: John C. Gilmore
Associate Professor: Allen R. Svenningson
Assistant Professors: Nancy E. Frith, James A. Martin, Alan H. Silver, William L. Smith, Theresa H. Tomczak

Department of Home Economics

Department Head and Associate Professor: Ann L. Walsh
Associate Professor: Sally M. Wellman
Assistant Professor: Jewel B. Smith
Supervisor of Nursery School: Melissa Muchewicz

Department of Military Science

Department Head and Professor: Lucien R. Prokopowich, Lt. Col

Department of Psychology and Sociology

Department Head and Assistant Professor: Richard G. Possenti
Associate Professor: Sarkis Atamian
Assistant Professors: Richard D. Brummett, Theodore L. Drahn, Nagabhushana Rao
Biology is an area of science in which many disciplines come to bear; in fact, biology is in large part the summation of these various disciplines. A thorough knowledge of biology, in both its pure and applied phases, is fundamental to the welfare of mankind. With these axioms in mind, the programs in the College of Biological Sciences and Renewable Resources are designed to give students an introduction to the humanities and social sciences, a background in mathematics and the physical sciences, a firm foundation in basic biological sciences, and advanced training in specialized fields. For more details, students should read descriptive materials in the Degree Programs Section.

Undergraduate Degrees — Bachelor of Arts in Biological Sciences; Bachelor of Science in Biological Sciences, Fisheries Biology, Medical Technology, Natural Resources, Wildlife Management.

Graduate Degrees — Master of Science in Botany, Biology, Fisheries Biology, Wildlife Management, Zoology; Master of Arts in Teaching; Ph.D. (Interdisciplinary).

Department of Biological Sciences

Acting Department Head and Professor:
Charles E. Behlke

Associate Professors: Howard M. Feder, David F. Murray

Assistant Professors: Stephen F. MacLean, Ronald L. Smith, Russell L. Shoemaker

Lecturer: Judith A. Weeden

Department of Land Resources and Agricultural Science

Department Head and Professor: Bonita J. Neiland
Academic Colleges

fields of accounting, business administration, economics, history, office administration and political science which meet the needs of the students, some of whom may intend to prepare themselves for graduate study or to enter the teaching profession; (4) to acquaint students with the problems and opportunities of economic, political and social development in Alaska, and the northern region of which it is a part; (5) to instruct students in social science research techniques; and (6) to prepare students for positions of civic leadership.

Undergraduate degrees — The college grants the following undergraduate degrees: Bachelor of Business Administration, with majors in Accounting and Business Administration, Bachelor of Arts in Economics, History, Office Administration, and Political Science, Bachelor of Science in Economics, Associate in Office Administration, Associate in Arts in Police Administration, and Associate in Computer Information Systems.

Graduate degrees — Programs leading to the Master of Business Administration degree, Master of Arts in Teaching in History, and the Master of Arts in History degree are offered to qualified students.

Department of Accounting

Department Head and Assistant Professor: Milton Fink
Associate Professor: Robert Calvert

Department of Business Administration

Department Head and Associate Professor: Dale Swanson
Assistant Professors: Mary Lou Roberts, Howard Zach

Department of Economics

Department Head and Professor: Richard Solie
Assistant Professors: M. Saleem Khan, Franklin L. Orth, Jr., Robert Snyder, Wayne Thomas, William Workman

Department of History

Department Head and Associate Professor: William Hunt

Professors: Herman Slotnick, Orlando Miller
Associate Professor: Claus Naske
Assistant Professors: Peter Cornwall, James Foster,
Instructor: Walter Soboleff

Department of Office Administration

Department Head and Associate Professor: Melba Pelosi
Assistant Professors: Radene Halverson, Patricia Turner
Instructor: Sue Shoemaker

Department of Political Science

Department Head and Associate Professor: Ronald Chinn
Associate Professors: Thomas Morehouse, R. London Smith
Assistant Professors: Gordon Harrison, Robert Hilliard
Lecturers: Walter Bonner, Henry Hills, John Wilt

COLLEGE OF EARTH SCIENCES AND MINERAL INDUSTRY

Earl H. Beistline, Dean

The objectives of the College of Earth Sciences and Mineral Industry are: to prepare students for their places as contributive citizens and for professional careers in disciplines such as geography, geology, and mineral industry. The college also seeks to carry on research and development work that will add to basic knowledge as well as assist in the discovery, recovery, and utilization of mineral resources.

Undergraduate Degrees — The college has programs that lead to a certificate or an associate degree in Mineral and Petroleum Technology; Bachelor of Science Degrees in Geography, Geography and Regional Development, Geology, Geological Engineering, and Mining Engineering. A Bachelor of Arts degree with majors in Geography, Geography and Regional Development, and Geology may be earned.

Graduate Degrees — Programs leading to a Master of Science degree are offered in Geology, Mineral Industry Management, and Mineral
Preparation Engineering; a M.A.T. degree is offered in Geology. The Geography Department participates in the interdisciplinary program in Regional Development which may lead to a Master of Science or Master of Arts degree.

The professional degree Mining Engineer (E.M.) may be earned by engineering graduates of the college.

The Geology Department offers the Ph.D. degree. Interdisciplinary research and study programs leading to the doctorate are available through cooperative arrangements between the department and the Geophysical and Marine Science institutes.

Mineral Industry Research Laboratory — The 1963 Alaska State Legislature authorized the establishment of a mineral industry research program at the University of Alaska. The purpose of the laboratory is to conduct appropriate applied and basic research in various areas of the mineral industry that will aid in the further utilization of Alaska's mineral resources. Research is conducted in facilities of the college and coordinated with graduate student academic programs.

Earth Sciences and Mineral Industry Agency — Housed in the Brooks Memorial Mines Building with the College of Earth Sciences and Mineral Industry is the College Office of the Branch of Alaskan Geology of the U.S. Geological Survey. This arrangement, leading to close association and cooperation and sharing of some facilities, tends to give the harmony and efficiency to the work of all for the benefit of the mineral industries of Alaska. In addition, close cooperation is maintained with the U.S. Bureau of Mines and the State Division of Geological and Geophysical Surveys.

Department of Geography
Department Head and Professor: Herbert H. Rasche
Associate Professor: Donald F. Lynch

Department of Geology
Department Head and Professor: Daniel B. Hawkins
Professors: Carl S. Benson, Robert B. Forbes
Associate Professors: Richard C. Allison, Thomas Hamilton, David Stone, Don M. Triplehorn, Donald Turner
Assistant Professors: Donald J. Grybeck, Nils I. Johansen, Nirendra N. Biswas, Wyatt Gilbert, Jurgen Kienle
Distinguished Lecturer: Florence R. Weber

Department of Mineral Engineering
Department Head and Professor: Chris A. Lambert, Jr., P.E.
Professors: Earl H. Beistline, P.E., Donald J. Cook, P.E., Ernest N. Wolff, P.E.
Lecturer: Douglas B. Colp, P.E.

Mineral Industry Research Laboratory
Associate Director and Geologist: Ernest N. Wolff, P.E.
Associate Professor of Coal Technology: P. Dharma Rao
Assistant Professors of Geological Engineering: Donald J. Grybeck, Nils I. Johansen

COLLEGE OF MATHEMATICS, PHYSICAL SCIENCES, AND ENGINEERING

Charles E. Behlke, Dean

Physical science is based upon mathematical fundamentals. Engineering is founded upon mathematical and physical principles. The integration of the departments of this college provides the common ground for training in science and technology.

The primary mission of the college is to provide education to the baccalaureate level in its departments and to supplement the primary purpose with research and graduate training where necessary.

Undergraduate Degrees — The college grants the following undergraduate degrees: Associate in Electronics Technology, Associate in Chemical Science, Bachelor of Arts, Bachelor of Science.

Graduate Degrees — The college offers the following graduate degrees: Master of Arts, Master of Arts in Teaching, Master of Science, Master of (Civil, Electrical, Environmental Health, Mechanical) Engineering, and Doctor of Philosophy.
Academic Colleges

Departments — Departments in the college include: Chemistry and Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Management, General Science, Mathematics, Mechanical Engineering, and Physics. The college also includes within its scope the program in Electronics Technology, the program in Environmental Health Engineering, and the program in Oceanography and Ocean Engineering.

Engineering Science Courses. — The designation Engineering Science is given to courses which are common to all fields of engineering. Each engineering curriculum specifies which of these courses are required and the semester in which it is advisable to take them.

Department of Chemistry
Department Head and Associate Professor: L. Claron Hoskins
Associate Professor: Charles Genaux
Assistant Professors: Donald Lokken, Paul B. Reichardt

Department of Civil Engineering
Department Head and Professor: John L. Burdick, P.E.
Associate Professors: Gary L. Guymon, George R. Knight, P.E.
Lecturer: William B. Fuller, P.E.
Lecturer and Supervisor of Laboratories: K.H. Hobson, P.E.

Department of Electrical Engineering
Department Head and Associate Professor: William M. Sackinger, P.E.
Professors: Howard Bates; Robert Merritt, P.E.
Associate Professors: Edward J. Gauss, P.E.; N.A. Lindberger, Thomas D. Roberts
Assistant Professors: Kenneth Kokjer, James P. Rogers

Department of Engineering Management
Department Head and Associate Professor: F. Lawrence Bennett, P.E.
Professor: John M. Hilpert

Department of General Science
Acting Department Head and Professor: Charles E. Behlke

Department of Mathematics
Department Head and Professor: Robert W. Brown
Professors: Thomas J. Head, William R. Cashen
Associate Professors: John O. Distad, Phillip A. Van Veldhuizen
Assistant Professors: Patricia Andrusen, Gary A. Gislason, Barbara Lando, Clifton Lando, Robert Sullivan
Instructors: Barbara Williams, Susan B. Royer

Department of Mechanical Engineering
Department Head and Professor: James B. Tiedemann, P.E.
Assistant Professor: Richard D. Nelson

Department of Physics
Department Head and Professor: J. Roger Sheridan
Associate Professors: John L. Morack, John S. Murray
Assistant Professor: Thomas E. Osterkamp

Electronics Technology Program
Program Head and Senior Instructor: Foye L. Gentry
Senior Instructor: Richard McWhirter
Instructors: James E. Davis, James D. Fowler, Arthur L. Dennis, Gregory J. Jennings

Environmental Health Engineering Program
Program Head and Assistant Professor: Timothy Tilsworth
Associate Professor: Jules B. Cohen
Assistant Professor: Daniel W. Smith

Oceanography and Ocean Engineering
Program Head and Associate Professor: Vera Alexander
ACCOUNTING
College of Business, Economics, and Government

Degree: Bachelor of Business Administration
Minimum Requirements for Degree:
130 Credits

The Accounting Department offers an extensive program for those interested in the fields of general accounting, auditing, cost accounting, and taxation. The objectives of the program are to provide a strong business background through an understanding of accounting and to train students for employment in accounting work.

Requirements for B.B.A. Degree with a Major in Accounting

1. Complete requirements for a B.B.A. degree listed on page 29.
2. Complete the following required Business Administration courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.A. 325—Financial Management</td>
<td>3</td>
</tr>
<tr>
<td>B.A. 331-332—Business Law</td>
<td>6</td>
</tr>
<tr>
<td>B.A. 342—Marketing</td>
<td>3</td>
</tr>
<tr>
<td>B.A. 360—Production Management</td>
<td>3</td>
</tr>
<tr>
<td>B.A. 361—Industrial Relations</td>
<td>3</td>
</tr>
<tr>
<td>B.A. 371—Business Data Processing</td>
<td>3</td>
</tr>
<tr>
<td>Econ. 321—Intermediate Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>Econ. 328—Statistical Methods</td>
<td>3</td>
</tr>
<tr>
<td>B.A. 380—Principles of Management</td>
<td>3</td>
</tr>
<tr>
<td>B.A. 462—Administrative Policy</td>
<td>3</td>
</tr>
<tr>
<td>Elective—Business Admin. & Economics</td>
<td>0-26</td>
</tr>
</tbody>
</table>

If the sum of all credits in accounting, business, and advanced economics is more than 78, then more than 130 total credits will be required for the degree.

3. Complete the following required Accounting courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc. 210—Income Tax</td>
<td>3</td>
</tr>
<tr>
<td>Acc. 311-312—Intermediate Accounting</td>
<td>6</td>
</tr>
<tr>
<td>Acc. 342—Managerial Cost Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Acc. 401-402—Advanced Accounting</td>
<td>6</td>
</tr>
<tr>
<td>Acc. 404—Adv. Managerial Cost Accounting</td>
<td>3</td>
</tr>
<tr>
<td>Acc. 452—Auditing</td>
<td>3</td>
</tr>
<tr>
<td>Elective—Accounting</td>
<td>0-6</td>
</tr>
</tbody>
</table>

If total accounting credits exceed 33, then more than 130 credits will be required for the degree.

ALASKA NATIVE LANGUAGES PROGRAM
College of Arts and Letters

Degree: Bachelor of Arts
Minimum Requirements for Degree:
130 Credits

There are nearly twenty different Alaska native languages: Aleut, Pacific Gulf Eskimo (also called Aleut), Central Yupik Eskimo, St. Lawrence Island Eskimo, Inupiaq Eskimo, Tsimshian, Haida, Tlingit, Eyak, and about ten Athapaskan languages. These languages are becoming recognized as the priceless heritage they truly are. The passage of the Alaska bilingual education law in 1972 has created a great demand for teachers who can speak and teach these languages in the schools throughout the State where there are native children. Professional opportunities for those skilled in these languages are many in teaching, research, and cultural, educational, and political development.

Central Yupik Eskimo is spoken by the largest number of people, and Inupiaq by the next largest. In these two languages major and minor curricula are now offered. For work in all other languages, individual or small-group instruction is offered under special topics. Thus there have frequently been instruction and seminars and workshops also in Tlingit, Haida, Athapaskan, and St. Lawrence Island Eskimo.

*Special arrangements may also be made for graduate work in Alaska Native Languages.

Requirements for B.A. Degree with a Major in Yupik Eskimo

1. Complete the general requirements for a B.A. degree (page 28.)
2. Complete the following courses:
Degree Programs

Requirements for B.A. Degree with a Major in Inupiaq Eskimo
1. Complete the general requirements for a B.A. degree (page 28.)
2. Complete the following courses:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Esk. 111-112—Elementary Inupiaq Eskimo</td>
</tr>
<tr>
<td>3</td>
<td>ANL 215—Eskimo-Aleut Languages</td>
</tr>
<tr>
<td>3</td>
<td>Esk. 417—Advanced Inupiaq Eskimo</td>
</tr>
<tr>
<td>3</td>
<td>Ling. 101—The Nature of Language</td>
</tr>
</tbody>
</table>

3. Complete four of the following:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Esk. 417—(additional) Adv. Inupiaq Eskimo</td>
</tr>
<tr>
<td>3</td>
<td>ANL 387—Bilingual Methods & Materials</td>
</tr>
<tr>
<td>3</td>
<td>Ling. 212—Structure of Language</td>
</tr>
<tr>
<td>3</td>
<td>Anth. 342—Anthropology of the Natives of Alaska</td>
</tr>
<tr>
<td>3</td>
<td>Hist. 100—Heritage of Alaska Natives</td>
</tr>
<tr>
<td>3</td>
<td>P.S. 283—Alaska Native Politics</td>
</tr>
<tr>
<td>3</td>
<td>Engl. 349—Aleut, Eskimo, and Indian Literature of Alaska in English Translation</td>
</tr>
<tr>
<td>3</td>
<td>ANL 216—Indian Languages of Alaska</td>
</tr>
<tr>
<td></td>
<td>A course in Inupiaq Eskimo or other approved subject</td>
</tr>
</tbody>
</table>

A Minor in Alaska Native Languages requires 15 credits in Eskimo or Alaska Native Language courses.

ANTHROPOLOGY
College of Behavioral Sciences and Education

Degrees: Bachelor of Arts, Bachelor of Science, Master of Arts

Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits; M.A.—30 Additional Credits

The Anthropology Department offers undergraduate level courses and some opportunities for undergraduate research. Anthropology contributes to an understanding of the complex problems of human behavior, cultural and social organization, and the relationship of man to the various environments. Archeological and human ecological research carried out in the field and library provides information about past and present modes of living and of origins and distribution of peoples and cultures.

Requirements for B.A. Degree or B.S. Degree with a Major in Anthropology
1. Complete general requirements for a B.A. or B.S. degree as listed on page 28 or 29.
2. Complete 24 credits in Anthropology exclusive of Anth. 101, including:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Anth. 202—Cultural Anthropology</td>
</tr>
<tr>
<td></td>
<td>Anth. 203—World Ethnography: Old World</td>
</tr>
<tr>
<td></td>
<td>Anth. 204—World Ethnography: New World, Pacific</td>
</tr>
<tr>
<td>4</td>
<td>Anth. 214—Archeology</td>
</tr>
<tr>
<td>3</td>
<td>Anth. 303—Culture History</td>
</tr>
<tr>
<td>4</td>
<td>Anth. 401—Primate and Human Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Anth. 423—Social Structure</td>
</tr>
<tr>
<td>3</td>
<td>Anth. 424—Primitive Religion</td>
</tr>
<tr>
<td>2</td>
<td>Anth. 498—Thesis or Project</td>
</tr>
</tbody>
</table>

3. Complete the following:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Psy. 101—Introduction to Psychology</td>
</tr>
<tr>
<td></td>
<td>Phil. 201—Introduction to Philosophy</td>
</tr>
<tr>
<td></td>
<td>Geol. 101 or 112—General or Historical Geology</td>
</tr>
<tr>
<td>4</td>
<td>Biol. 107-108—Fundamentals of Biology</td>
</tr>
</tbody>
</table>

4. A minor is not required for the B.S. degree with a major in Anthropology.

A minor in Anthropology requires 12 hours in Anthropology in addition to Anth. 101.

Requirements for M.A. Degree with a Major in Anthropology

The graduate program allows for specialization in the field of anthropology. Students who wish to add linguistics may do so by taking courses in the Department of Linguistics and Foreign Languages by special arrangement.
Requirements for the degree: The master's degree requires 30 semester hours of anthropology and related subjects, which are divided as follows:

12 credit hours of graduate courses in anthropology
6 credit hours for thesis
12 credit hours in related subjects

Language: The need for a language or a suitable substitute shall be determined by the student and his advisory committee.

Examination: The candidate will take a comprehensive written examination after the completion of the course work, and after completion of the thesis be called for a brief defense of the methods involved in its writing and the basis for its facts.

APPLIED STATISTICS
College of Mathematics, Physical Sciences, and Engineering

The Applied Statistics Program is designed to strengthen and consolidate the applied statistics teaching and consulting functions. The program, a non-degree-granting one, is supervised by an interdisciplinary committee of selected staff members from the academic colleges and research institutes. The committee makes recommendations concerning the applied statistics course offerings, supervises the teaching program, provides a mechanism for statistical consulting services for other units of the University and serves as a focal point for applied statistics-related activities.

The applied statistics courses are taught by faculty members holding joint appointments in the Applied Statistics Program and other units of the University. As demand and circumstances warrant, short courses or seminars covering specialized areas of applied statistics, for which the University has limited expertise, will be presented by experts from outside the University.

ART
College of Arts and Letters

Degree: Bachelor of Arts
Minimum Requirements for Degree: 130 Credits

Degree Programs

The program of the Art Department recognizes the responsibility of the fine arts within the humanities. Courses in art further encourage independent, original, and creative thinking. The language of art is universal and through it man's creative and intellectual endeavors become more meaningful.

Requirements for B.A. Degree with a Major in Art
1. Complete general requirements for a B.A. degree as listed on page 28.
2. Complete a minimum of 37 hours of credit in art courses. A maximum of 54 hours of credit in art courses may be counted toward the degree.
3. Complete the following courses in Art:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Art Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Art 105-106—Freehand Drawing</td>
</tr>
<tr>
<td>4</td>
<td>Art 207-208—Beginning Printmaking</td>
</tr>
<tr>
<td>6</td>
<td>Art 211-212—Beginning Sculpture</td>
</tr>
<tr>
<td>6</td>
<td>Art 213-214—Beginning Oil Painting</td>
</tr>
<tr>
<td>6</td>
<td>Art 261-262—History of World Art</td>
</tr>
<tr>
<td>2</td>
<td>Art 307—Intermediate Printmaking</td>
</tr>
<tr>
<td>3</td>
<td>Art 311—Intermediate Sculpture</td>
</tr>
<tr>
<td>2</td>
<td>Art 313—Intermediate Oil Painting</td>
</tr>
<tr>
<td>4</td>
<td>Art 407-408—Advanced Printmaking</td>
</tr>
<tr>
<td>6</td>
<td>Art 411-412—Advanced Sculpture</td>
</tr>
<tr>
<td>4</td>
<td>Art 413-414—Advanced Oil Painting</td>
</tr>
</tbody>
</table>

4. Transfer students who are candidates for the B.A. degree with a major in Art must complete a minimum of 18 hours of credits in art courses while in residence.

A Minor in Art requires 12 hours of approved Art courses.

Art Program for Teachers
Students who are preparing to teach Art must complete the requirements for an Education minor as required by the Department of Education.

ASIAN STUDIES
Interdisciplinary Minor Program

A minor in Asian Studies provides instruction in the varieties of Asian languages and cultures through an interdisciplinary approach, and enables students to consolidate various course offerings into a meaningful and cohesive program relevant to several major fields of specialization.
Degree Programs

Requirements for Asian Studies Minor
Complete 15 semester credits in approved courses in Asian Studies, distributed among at least three departments, and including material on at least two Asian countries.
Asian Studies Courses: Anth. 300; Art 493; Hist. 121-122, 330, 331, 481-482; Geog. 311; Jap. 101-102, 201-202; Phil. 202; P.S. 342.

BIOLOGICAL SCIENCES
College of Biological Sciences and Renewable Resources

Degrees: Bachelor of Arts, Bachelor of Science, Master of Science, Master of Arts in Teaching, Doctor of Philosophy (Interdisciplinary)

Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits; M.S.—30 Additional Credits; M.A.T.—30 Additional Credits

The curricula in the Biological Sciences Department are designed to give the student a broad education as well as a sound foundation in the basic principles of biology. Students pursuing either a B.A. or B.S. degree may have majors in biological sciences. The B.A. degree includes fewer credits in the major field, but gives greater emphasis in the fields of social sciences and humanities and allows a greater breadth of subject matter in the curricula. The B.S. degree includes a foundation in the basic sciences as well as a stronger major within the Biological Sciences Department. Candidates who expect to teach in public secondary schools must be sure that education requirements are met.

Requirements for B.A. Degree with a Major in Biological Sciences
1. Complete the general requirements for a B.A. degree as listed on page 29.
2. Complete the following courses:
 Biol. 107-108, 210, 252-253, 271 and at least 16 additional credits in biology, a majority of which should be at the upper division level, including at least one course in botany, one in microbiology, and one in zoology.*
 Chemistry — one year
 Mathematics — one year

 A minor in Biological Sciences requires 20 credits in biology, including Biol. 107-108, 252, and 303 and two of the following courses:
 Biol. 201, 208, 210, 239, 242, 305.

Requirements for B.S. Degree with a Major in Biological Sciences
1. Complete the general requirements for a B.S. degree as listed on page 29.
2. Complete the following courses:
 Biol. 107-108, 210, 252-253, 271 and at least 25 additional credits in biology, a majority of which should be at the upper division level, including at least one course in botany, one in microbiology, and one in zoology.*
 Chem. 105-108
 Organic Chemistry — one semester.
 Physics, Geology, Applied Statistics, Chemistry and/or Math — 8 credits.
 Foreign Language — one collegiate year; or 6 credits of Social Sciences and/or Humanities beyond the general requirements for the B.S. degree.

 *Students preparing to enter professional schools (medical, dental, veterinary, etc.) may substitute up to eight credits in the B.A. program or 12 credits in the B.S. program of approved chemistry courses for some of these additional credits.

Students from Other Departments
Candidates for the Bachelor of Science degree in General Science wishing a major in biological sciences must satisfy both the requirements of their major curriculum and those listed above for a B.A. degree with a major in Biological Sciences.

Requirements for M.S. Degree with a Major in Botany, Biology, or Zoology
1. A minimum of 30 credits of approved courses, including Biol. 697-698, Thesis.
2. Completion of the general requirements for a graduate degree (page 29.)
3. Students working in subject areas involving significant non-English literature may be expected to read the appropriate foreign language.

Requirements for M.A.T. Degree
Persons interested in this degree program should see the head of the department.

Requirements for Ph.D. Degree
See page 30 for degree requirements.
BUSINESS ADMINISTRATION
College of Business, Economics, and Government

Degrees: Bachelor of Business Administration, Master of Business Administration

Minimum Requirements for Degrees:
B.B.A. — 130 Credits; M.B.A. — 30 Additional Credits

The Business Administration Department offers professional training in the field of management, finance, and marketing to those individuals interested in entering industry or government upon graduation. The objective of the program is to prepare men and women to meet the complex problems of the political, economic, and social environment and to enable them to give efficient service to industry and government on the basis of their academic training.

Requirements for a Bachelor of Business Administration Degree
1. Complete general requirements for a B.B.A. degree listed on page 29.
2. Complete the following foundation courses:
 - B.A. 331-332 — Business Law 6
 - B.A. 325 — Financial Management 3
 - B.A. 343 — Principles of Marketing 3
 - B.A. 360 — Production Management 3
 - B.A. 361 — Industrial Relations 3
 - B.A. 371 — Business Data Processing 3
 - B.A. 390 — Principles of Management 3
 - B.A. 462 — Administrative Policy 3
 - Econ. 321 — Intermediate Microeconomics 3
 - Econ. 328 — Statistical Methods 3
3. A student must take a minimum of 18 hours of the courses listed below including all of the courses in one of the three groups.
 - Credits
 - Management:
 - Econ. 334 — Intermediate Macroeconomics 3
 - B.A. 359 — Regulation of Industry 3
 - Econ. 409 — Indust. Organ. & Public Policy 3
 - Econ. 420 — Labor Economics 3
 - Econ. 424 — Managerial Economics 3
 - B.A. 450 — Organization Theory 3
 - Marketing:
 - Jour. 398 — Principles of Advertising 3
 - Econ. 409 — Indust. Organ. & Public Policy 3
 - B.A. 443 — Marketing Analysis of Retailing
 - Management .. 3

Degree Programs
B.A. 444 — Industrial Marketing 3
B.A. 445 — Marketing Research 3
B.A. 475 — Transportation and Logistics 3

Finance:
- Acc. 311-312 — Intermediate Accounting 6
- Econ. 409 — Indust. Organ. & Public Policy 3
- Econ. 324 — Intermediate Macroeconomics 3

A student emphasizing Finance must take the above four courses plus two of the following electives:
- B.A. 423 — Investment Management 3
- Econ. 350 — Money and Banking 3
- Econ. 351 — Public Finance 3
- Acc. 210 — Income Tax .. 3
- Acc. 342 — Managerial Cost Accounting 3

A minor in Business Administration requires 15 credits of Business Administration courses as directed by Department.

Requirements for the Master of Business Administration Degree
1. Completion of the general requirements for a graduate degree beginning on page 29 of the catalog. (Note that no foreign language requirement is involved in the Master of Business Administration degree.)
2. Completion of a minimum of 30 semester hours of required courses in business administration and economics, including a thesis or research project, as approved by the candidate's graduate committee.
3. Completion of a thesis or research project, which normally will carry no more than six semester hours of credit. Under unusual conditions and upon petition, the thesis credit may be granted beyond the traditional six. The thesis credit and research project credit apply toward the 30 required hours. (Decisions on thesis or research project are the sole prerogative of the candidate's supervisory committee.)
4. A minimum terminal grade point average of 3.00.
5. A minimum grade for a comprehensive written examination given during the last semester of course work to test achievement and knowledge in the general area of business.
6. Passage of an oral examination, after the thesis or research project has been approved, covering the student's field of specialization and thesis or research project content.

CHEMICAL ENGINEERING
College of Mathematics, Physical Sciences, and Engineering

Chemical engineering is concerned with the development and application of manufacturing
processes in which physical or chemical changes of materials are involved. The chemical engineer is primarily concerned with the development, design, and operation of equipment and processes for bringing out those desired changes on an industrial scale and at a profit. Chemical engineers find opportunities with manufacturers of all the numerous chemical products of commerce such as the heavy and fine chemicals, pulp and paper, plastics, drugs, dyes, soap, and mineral products; with atomic energy, missile and satellite programs; with petroleum refineries; with the mineral industry; with the food industries; and with many other industries. These opportunities may involve research, design, control, operation, and technical sales.

The University does not offer a full four-year curriculum in chemical engineering but hopes to do so in the future. The first two years of the curriculum for the B.S. degree with a major in chemistry will, in general, prepare a student to transfer into chemical engineering at other institutions. However, it would be wise for students to consult the catalogs of institutions to which they might transfer and plan their two years at the University of Alaska to conform to their requirements.

CHEMICAL SCIENCE

College of Mathematics, Physical Sciences, and Engineering

Degree: Associate in Chemical Science

Minimum Requirements for Degree:

- 60 Credits

Since the fall semester of 1971, the Department of Chemistry and Chemical Engineering has offered a two year program leading to an A.C.S. degree. This degree provides academic recognition of a level of competence in chemical science required for a number of employment opportunities. In addition, the student completing this program should be in a position to continue his education toward a baccalaureate degree in either chemistry or chemical engineering with no loss in time or academic credit.

Requirements for an Associate Degree in Chemical Science

Complete the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 105-106—General Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Chem. 211—Chemical Principles</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 212—Intro. Quant. Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 321-322—Organic Chemistry</td>
<td>6</td>
</tr>
<tr>
<td>Chem. 324—Organic Laboratory</td>
<td>3</td>
</tr>
<tr>
<td>Math. 200-201-202</td>
<td>12</td>
</tr>
<tr>
<td>Phys. 105-106—University Physics</td>
<td>8</td>
</tr>
<tr>
<td>E.S. 101—Graphics</td>
<td>2</td>
</tr>
<tr>
<td>E.S. 201—Computer Technology</td>
<td>3</td>
</tr>
<tr>
<td>Engl. 111—Methods of Written Comm</td>
<td>3</td>
</tr>
<tr>
<td>Speech Communications elective</td>
<td>3</td>
</tr>
<tr>
<td>Electives to bring total credits to</td>
<td>60</td>
</tr>
</tbody>
</table>

CHEMISTRY

College of Mathematics, Physical Sciences, and Engineering

Degrees: Bachelor of Arts, Bachelor of Science, Master of Arts, Master of Arts in Teaching, Master of Science, Doctor of Philosophy (Interdisciplinary)

Minimum Requirements for Degrees:

- B.A., B.S.—130 Credits
- M.A., M.A.T., M.S.—30 Additional Credits
- Ph.D. (Interdisciplinary) — No Fixed Credits

Graduates in chemistry qualify in many fields as teachers of chemistry; supervisors in industry; technical sales personnel; research chemists in federal, state, municipal, academic, or industrial laboratories; in pre-medicine; or as laboratory technicians. The rapid introduction of chemical techniques in all branches of commerce and the creation of the many synthetic products has caused phenomenal growth in the profession. Specific mention may be made of the manufacture of plastics, glass, pigments, starch, explosives, dyes, gases, petroleum products, fine and heavy chemicals, perfumes, drugs, vitamins, hormones, solvents, specialized fuels including nuclear fuels, and the various metals and alloys.

The curriculum in chemistry offers an opportunity for broad scientific study. All students specializing in chemistry will meet basic requirements in general inorganic, analytical, organic, and physical chemistry, as well as mathematics and physics. These may be
supplemented by courses in biology, education, engineering, geophysics, geology, metallurgy, and advanced courses in biology, chemistry, mathematics, and physics according to the interest of the individual student.

The primary purpose of our program is to provide the educational basis for creative scientists or engineers who are so vital to the future development of the nation and the State of Alaska. In particular, the Chemistry Department encourages study of chemical problems associated with the Arctic in order to provide qualified staff for schools and laboratories in Alaska. After the introductory courses, the curriculum is planned first for the student majoring in the broad field of chemistry and, second, for the non-major who is primarily interested in other aspects of the physical or biological sciences, but who requires competency in the theories and techniques of contemporary chemistry to achieve in his chosen field. Such service courses and programs are an outstanding feature of the department.

The department offers the student well-equipped laboratories housing instrumentation for nuclear magnetic resonance and electron spin resonance spectrometry, high resolution infrared, laser raman, ultraviolet, and visible spectrophotometry, gas chromatography, x-ray diffraction, and carbon-hydrogen-nitrogen analysis. Additional equipment, such as mass spectrometers, amino acid analyzers, and atomic absorption instruments, is available in cooperation with other departments and institutes at the University.

The field of chemistry is highly developed. Graduate study is a necessity for the better opportunities in this field. A prospective chemist should have some advanced work in chemistry and/or additional courses in mathematics and physics. Sufficient study in two foreign languages, preferably German and Russian, to gain a reading knowledge, is recommended.

Requirements for B.A. Degree with a Major in Chemistry
1. Complete the general requirements for a B.A. degree listed on page 29.
2. Complete the following Chemistry courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 105-106—General Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Chem. 211—Chemical Principles</td>
<td>4</td>
</tr>
</tbody>
</table>

Requirements for B.S. Degree with a Major in Chemistry
1. Complete the general requirements for a B.S. degree listed on page 29.
2. Complete the courses required for a B.A. degree with a major in Chemistry as listed above.
3. Complete the following additional Chemistry courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 402—Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>**Chem. 421—Adv. Organic Chemistry</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>**Chem. 425—Adv. Organic Laboratory</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>**Chem. 431—Adv. Physical Chemistry</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>**Chem. 451—General Biochemistry</td>
<td>3-4</td>
</tr>
<tr>
<td>Chem. 491-492—Seminar (Juniors)</td>
<td>0</td>
</tr>
<tr>
<td>Chem. 495-496—Research</td>
<td>4</td>
</tr>
</tbody>
</table>

Suggested Curriculum for a B.S. Degree with a Major in Chemistry

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>15 to 18</td>
</tr>
<tr>
<td>Chem. 105—Gen. Chem. & Intro. Qualitative Analysis</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Chem. 211—Chemical Principles</td>
<td>4</td>
</tr>
<tr>
<td>Phys. 105—University Physics</td>
<td>4</td>
</tr>
<tr>
<td>Math. 200—Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Engl. 111—Methods of Written Comm.</td>
<td>3</td>
</tr>
<tr>
<td>*Social Sci./Humanities elective</td>
<td>0-3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 to 18</td>
</tr>
<tr>
<td>Chem. 106—Gen. Chem. & Intro. Qualitative Analysis</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Chem. 212—Intro. Quant. Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Phys. 106—University Physics</td>
<td>4</td>
</tr>
<tr>
<td>Math. 201—Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Sp.C. 111—Fund. of Oral Comm.</td>
<td>3</td>
</tr>
<tr>
<td>*Social Sci./Humanities elective</td>
<td>0-3</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>16 or 17</td>
</tr>
<tr>
<td>Chem. 212—Intro. Quant. Analysis</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>*Elective</td>
<td>4</td>
</tr>
</tbody>
</table>
Degree Programs

Chem. 321—Organic Chemistry3
Math. 202—Calculus ..4
Engl. 211—Adv. Comp. & Modes of Lit.
or
Engl. 213—Adv. Exposition ..3
*Social Sci./Humanities elective2-3

Spring Semester 16 or 17 Credits
Chem. 322—Organic Chemistry3
Chem. 324—Organic Laboratory3
*Social Sci./Humanities electives10-11

Third Year
Fall Semester 16 or 17 Credits
Chem. 331—Physical Chemistry3
Chem. 433—Instrumental Methods in Chem.3
Chem. 491—Seminar ...0
Ger. 111—German for Reading Ability
or
Russ. 111—Russian for Reading Ability3
*Electives ...7 or 8

Spring Semester 16 or 17 Credits
Chem. 332—Physical Chemistry3
Chem. 434—Instrumental Methods in Chem.3
Chem. 402—Inorganic Chemistry3
Chem. 492—Seminar ...0
Ger. 112—German for Reading Ability
or
Russ. 112—Russian for Reading Ability3
*Electives ...6 or 7

Fourth Year
Fall Semester 16 or 18 Credits
**Chem. 421—Adv. Organic Chemistry
or
**Chem. 425—Adv. Organic Lab
or
or
**Chem. 451—Gen. Biochemistry9-4
Chem. 491—Seminar ...1
Chem. 495—Research ...2
*Electives ...7-10

Spring Semester 16 or 18 Credits
Chem. 402—Inorganic Chem.3
Chem. 492—Seminar ...1
Chem. 496—Research ..2
*Electives ...10-12

*A minimum of 130 credits must be earned. This curriculum meets the suggested minimum standards of the American Chemical Society, but additional advanced courses in Chemistry may be elected with the approval of the Department of Chemistry. Graduates are certified by the American Chemical Society on completion of appropriate courses. A reading knowledge of a foreign language, although not required for professional undergraduate education in chemistry, is strongly recommended, particularly for students planning advanced study in science. German is especially useful.

**Advanced courses in mathematics, geology, physics, or biological sciences may be substituted with the approval of the Department of Chemistry.

Requirements for a Minor in Chemistry
A minor in chemistry requires 12 credits above the foundation courses (Chem. 105-106 or Chem. 211) approved by the head of the chemistry department.

Requirements for M.A. or M.S. Degree in Chemistry
1. A minimum of 30 credits of approved courses.
2. Completion of the general graduate degree requirements beginning on page 29.

Graduate students seeking a master's degree in chemistry must develop a program in one of the general divisions of chemistry: analytical, inorganic, organic or physical. A student entering without preparation to take these courses may require additional time to earn his degree.

Requirements for M.A.T. Degree
Persons interested in this degree program should see the head of the department.

Requirements for Ph.D. Degree
Completion of the requirements for the doctoral degree beginning on page 30. Persons interested in this degree program should write to the Provost, outlining in some detail previous training and interest for future study.

CIVIL ENGINEERING
College of Mathematics, Physical Sciences and Engineering

Degrees: Bachelor of Science, Master of Civil Engineering, Master of Science

Minimum Requirements for Degrees:
B.S.—130 Credits; M.C.E.—160 Credits; M.S. 30 Additional Credits

Engineering embraces the wide range of cultural and professional subjects having to do with the planning, design, and construction of works necessary for civilization. Civil Engineering in particular deals with environmental control; bridges; buildings, dams, and harbor facilities; water resource
development and waste disposal; water power, irrigation works, and drainage; air, water, highway, and railway transportation; construction and management; topographic surveying and geodesy; city management and developmental planning.

Candidates for the Bachelor of Science degree will be required to take a comprehensive examination in their general field. (Completion of the State of Alaska Engineering-In-Training Examination will satisfy this requirement.)

Graduate students should enter in one of two programs; those whose goal is broad professional practice will ordinarily choose the curriculum leading to the degree Master of Civil Engineering; those whose interests or background favor a highly specialized program, with emphasis on research and/or advanced specialized study, will ordinarily select the Master of Science in Civil Engineering degree.

In addition to the general civil engineering courses offered, the following specialties are available:

Arctic Engineering. The department administers an interdisciplinary specialty in Arctic Engineering, designed to equip graduates with the knowledge applicable to engineering practice in cold regions. The program includes the problems of design, construction, and maintenance of engineered facilities, services, and transportation in an arctic and subarctic environment.

Water Resources and Hydrology. The Master's degree programs can emphasize a flexible program in water resources and hydrology tailored to individual students. The courses within the department in these areas stress the problems of northern regions and emphasize principles of analysis, planning, and engineering design as related to water supply, flood control, environmental safety, and land management.

In addition to the Civil Engineering courses, a degree program can include courses in ocean engineering, environmental health engineering, engineering management, arctic geography, and other areas.

Requirements and Curriculum for B.S. Degree with a Major in Civil Engineering

First Year

Fall Semester
Engl. 111—Methods of Written Communication ... 3

Fall Semester
Engl. 111—Methods of Written Communication ... 3

Degree Programs

Spring Semester
Math. 200—Calculus .. 4
E.S. 101—Graphics .. 2
E.S. 111—Engineering Science ... 3
Chemistry (Approved) .. 4

Spring Semester
16 credits
Speech Communications elective .. 3
Math. 201—Calculus .. 4
E.S. 102—Graphics .. 2
C.E. 112—Elementary Surveying ... 3
Chemistry (Approved) .. 4

Second Year

Fall Semester
Math. 202—Calculus .. 4
Phys. 105—University Physics ... 4
E.S. 201—Computer Techniques ... 3
Engl. 211—Adv. Composition and Modes of Literature 3
or Engl. 213—Advanced Exposition ... 3
Social Science/Humanities Elective ... 3

Spring Semester
17 credits
Math. 302—Differential Equations .. 3
Phys. 106—University Physics ... 4
E.S. 208—Mechanics ... 4
C.E. 334—Prop. of Material ... 3
Social Science/Humanities Elective ... 3

Third Year

Fall Semester
17 credits
E.S. 301—Engr. Analysis ... 3
E.S. 307—Elem. of Electr. Engr. .. 4
E.S. 331—Mech. of Materials ... 3
E.S. 341—Fluid Mechanics .. 4
Social Science/Humanities elective ... 3

Spring Semester
16 credits
E.S. 348—Basic Thermodynamics .. 3
E.S. 398—Instrumentation & Measurement .. 3
C.E. 441—Sanitary Engineering .. 4
C.E. 344—Water Res. Engineering ... 3
Geol. 261—Geology for Engineers .. 3

Fourth Year

Fall Semester
16 credits
C.E. 435—Soil Mechanics ... 3
C.E. 431—Structural Analysis ... 4
C.E. 415—Surveying ... 4
Social Science/Humanities Elective ... 6

Spring Semester
15 credits
E.M. 450—Economic Analysis and Operations .. 3
C.E. 402—Transportation Engineering ... 2
C.E. 422—Foundation Engineering .. 2
C.E. 432—Structural Design ... 4
Elective ... 4

73
DEGREE PROGRAMS

Requirements for the Master of Civil Engineering Degree
Students entering the Master of Civil Engineering program should have completed a bachelor's degree in engineering.
A student will elect a Civil Engineering program approved by his graduate committee. Thirty semester credits of approved courses beyond the B.S. degree are required. M.C.E. candidates will have passed a State Engineer-In-Training Examination prior to the awarding of the degree.

Requirements for the M.S. Degree in Civil Engineering
A student selecting this program will meet the general requirements for the Master's degree (page 29) plus the following: Thirty semester hours of credit approved by his graduate committee, of which six to twelve hours will be C.E. 697, 698.

COMPUTER INFORMATION SYSTEMS

College of Business, Economics, and Government

Degree: Associate in Computer Information Systems
Minimum Requirements for Degree:
63 Credits

Requirements for an Associate in Computer Information Systems

I. General Education Requirements:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>A. Specific</td>
</tr>
<tr>
<td>6</td>
<td>English</td>
</tr>
<tr>
<td>6</td>
<td>Political Science or American History (in sequence)</td>
</tr>
<tr>
<td>3</td>
<td>Speech</td>
</tr>
<tr>
<td>23</td>
<td>B. General:</td>
</tr>
</tbody>
</table>

Mathematics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Math 107—College Algebra</td>
</tr>
<tr>
<td>2</td>
<td>Math 108—Trigonometry</td>
</tr>
<tr>
<td>3</td>
<td>Math 110—Mathematics of Finance</td>
</tr>
<tr>
<td>3</td>
<td>Econ. 221—Intro. to Statistics for Economics & Business</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Acc. 101—Elementary Accounting</td>
</tr>
<tr>
<td>3</td>
<td>Acc. 102—Elementary Accounting</td>
</tr>
<tr>
<td>3</td>
<td>CIS 101—Intro. to Data Processing and Fortran</td>
</tr>
<tr>
<td>4</td>
<td>B.A. 371—Business Data Processing</td>
</tr>
</tbody>
</table>

II. Major Specialty:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>CIS 104—Operations Management</td>
</tr>
</tbody>
</table>

DENTISTRY

See Health Sciences, Preprofessional Curricula.

ECONOMICS

College of Business, Economics, and Government

Degrees: Bachelor of Arts, Bachelor of Science
Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits.

Economics is the study of those social activities of man which are concerned with the production, distribution, and consumption of goods and services. In today's complex world, nearly all social phenomena and problems have economic aspects. Organized knowledge of the functioning of our economy and of its relations with other economic systems is therefore essential to an understanding of the world in which we live.

The department considers its goal of teaching to be threefold: (1) to provide students with basic tools of analysis, and factual, statistical, and descriptive materials which will assist them in discharging their duties as citizens; (2) to introduce students majoring in this department to the various fields of economics in order to prepare them for positions in business, government, and graduate study; and (3) to offer a course of study suitable for a minor in economics.

Requirements for B.A. Degree with a Major in Economics

2. Complete the following additional foundation courses:
 Acc. 221—Fundamentals of Accounting........3
 Econ. 121-122—Principles of Economics6
 Math. 121-122—Elementary Functions and
 Modern Algebra..8
 or
 Math. 106—College Algebra and Trig............5
 P.S. 101—American Government and
 Political Science.................................3

3. Complete 27 additional credits in Economics, including:
 Econ. 221—Intro. to Statistics for Economics
 and Business...3
 Econ. 321— Intermediate Microeconomic
 Theory...3
 Econ. 472—Intermediate Macroeconomic
 Theory...3
 Econ. 472—Seminar in Contemporary
 Economic Problems..................3
 Electives in Economics
 (must be 200 level or higher).............15
 (Six hours of the following courses may be included:
 103.)

Requirements for B.S. Degree with a Major in
Economics
1. Complete the general requirements for a B.S.
 Degree listed on page 29.
2. Complete the following foundation courses:
 Econ. 121-122—Principles of Economics6
 Math. 121-122—Intro. to Modern Algebra
 and Analysis...8
 or
 Math. 106—College Algebra and Trig............5
 Math. 200—Calculus................................4
 Acc. 221—Fundamentals of Accounting........3
 P.S. 101-102—American Government..............6
3. Complete 30 additional credits in Economics, including:
 Econ. 221—Introduction to Statistics............3
 Econ. 321—Intermediate Microeconomics........3
 Econ. 324—Intermediate Macroeconomics........3
 Econ. 326—Statistical Methods..................3
 Econ. 425—History of Economic Thought........3
 Econ. 472—Seminar in Contemporary
 Economic Problems..................3
 Electives in Economics (200 level or higher)......12
 (Six hours of the following courses may be included:
 103.)

A Minor in Economics requires 15 credits in
Economics including Econ. 121 and 122.

EDUCATION
College of Behavioral Sciences and
Education

Degrees: Bachelor of Education, Master of
Education, Master of Arts in Teaching,
Educational Specialist

Minimum Requirements for Degrees:
B.Ed.—130 Credits; M.Ed.—30-36 Additional
Credits; M.A.T.—30 Additional Credits;
Ed.S.—60 Additional Credits.

The Education Department offers curricula
designed to prepare personnel for teaching in
elementary and secondary schools. Students are
introduced to fundamental problems of
education in the contemporary world through
courses designed to develop perspective and
understanding of the relations of education to
society. Courses provide information and
practice in the development of instructional
materials and the understanding of methods of
instruction. Students are formally admitted to the
program of teacher education on the basis of
multiple criteria of their ability to make a positive
contribution to the educational profession.

Alaska Rural Teacher Training Corps — In
addition to the on-campus program for teacher
preparation, the University of Alaska, in
consortium with Alaska Methodist University
and the Alaska State Operated Schools system, is
conducting a four-year experimental field-based
teacher training program in eleven rural Alaskan
communities. The program is designed to
explore the viability of field-based training, with
particular focus on a cross-cultural environment.
Applications for the program may be obtained
through the Department of Education on
campus, or by writing directly to Alaska State
Operated Schools, 650 International Airport
Road, Anchorage, Alaska 99502.

Certification — Students may qualify for
teaching certificates in various states only by
planning their programs to meet specific
requirements. Certificates are issued by the
appropriate state department of education. In
Alaska, certificates are granted by the Alaska
Department of Education in Juneau. Students
who obtain the B.Ed. degree will meet the
current academic requirements for Alaskan
certification. Any student minoring in education
must meet the Alaska certification requirements.
Degree Programs

Students seeking a minor in education should consult with the head of the Education Department during their freshman year to obtain specific requirements.

Admission to Teacher Education — Any student wishing to prepare for teaching through the University of Alaska must formally apply for admission to the Teacher Education Program. Students should consult with the head of the Education Department at the beginning of their sophomore year or while enrolled in Ed. 201 to initiate procedures for formal application for admission to the Teacher Education Program. Enrollment in education courses in no way implies admission to the Teacher Education Program.

Requirements for B.Ed. Degree with a Major in Elementary Education

Credits

1. Humanities (Art, English, Languages, Linguistics, Music, Philosophy, Speech) (20)
a. Required courses:
 Engl. 111—Methods of Written Comm. (3) and
 Engl. 211—Adv. Composition with Modes of Literature or Engl. 213—Adv. Exposition ... 6
 Sp.C. 111—Fund of Oral Comm. 3
b. Recommended courses:
 Engl. 213—Advanced Exposition 3
 Mus. 309—Elementary School Music Methods ... 3
 Phil. 201—Introduction to Philosophy 3
 Sp.C. 241—Public Speaking I 3
 or
 Sp.C. 211—Vlce and Diction 2
 Engl. 318—Modern Grammar 3

2. Social Sciences (Anthropology, Economics, Geography, History, H.E. 236, Political Science, Psychology, Sociology) (24)
a. Required courses:
 Hist. 101-102—Western Civilization 6
 or
 Hist. 131-132—History of the U.S. 6
 P.S. 101-102—Intro. to American Government and Political Science 6
 Psy. 101—Introduction to Psychology 3
 Psy. 245—Child Development 3
b. Recommended courses:
 Econ. 121-122—Principles of Economics 6
 Anth. 101—The Study of Man 3

 Anth. 342—Anthropology of the Natives of Alaska .. 3
 Geog. 101—Introductory Geography 3
 Hist. 341—History of Alaska 3
 Soc. 101-102—Introduction to Sociology 6
3. Mathematics ... 6
 (Students are advised to take Math. 105 and 205 or Math. 345)
4. Natural Sciences (Anth. 401, Biological Sciences, Chemistry, Geog. 105-401, Geology, Physics) (6)

5. Education (students must maintain a 2.00 in each required Education course and an overall g.p.a. of 2.00) .. (34)
a. Required courses:
 Ed. 201—Orientation to Education 3
 Ed. 313—Educational Psychology 3
 Ed. 314—Practicum in Tutoring:
 Behavior Modification 1
 Ed. 332—Tests and Measurements 3
 Ed. 409—The Teaching of Reading 3
 *Ed. 452—Student Teaching 6
 *Candidates who have taught successfully two years in the public elementary schools may petition to be excused from Ed. 452.
 b. Nine credits from the following courses:
 Ed. 301—Social Studies for Elementary Teachers ... 3
 Ed. 302—Language Arts for Elementary Teachers ... 3
 Ed. 304—Literature for Children 3
 Ed. 306—Teaching of Science in Elementary Schools ... 3
 Ed. 307—Teaching of Arithmetic 3
 Ed. 309—Elementary School Music Methods 3
 Ed. 311—Audio-Visual Methods and Materials .. 3
 c. Six credits from the following courses:
 Ed. 345—Sociology of Education 3
 Ed. 348—History of Education 3
 Ed. 422—Philosophy of Education 3
 Ed. 426—Principles and Practices of Guidance .. 3
 Ed. 446—Public School Organization, Control and Support 3
 Ed. 460—Education of Culturally Different Youth .. 3

6. A total of 36 credits (including 12 upper division credits) in any two of the following fields, with a minimum of 12 credits in either field:
 Anthropology Mathematics
 Art Music
 Biological Sciences Philosophy
 Chemistry Physical Education
 Economics Physics
 English Political Science
<table>
<thead>
<tr>
<th>French</th>
<th>Geography</th>
<th>Geology</th>
<th>German</th>
<th>History</th>
<th>Linguistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Credits earned in fulfillment of (1), (2), (3), and (4), above may be applied toward courses listed in (6) above.

7. Forty-eight credits of upper-division courses, 24 of which must be completed at the University of Alaska.

8. Sufficient free electives to total 130 credits.

Requirements for a Minor in Elementary Education and Minimum* requirements for Elementary Teacher Credential Endorsement

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
</table>

1. Complete the following required courses:
 - Ed. 313—Educational Psychology
 - Ed. 314—Practicum in Tutoring: Behavior Modification
 - Ed. 332—Tests and Measurements
 - Ed. 409—Teaching of Reading
 - Ed. 452—Student Teaching

 Total Credits 25

 Students must also meet requirements for admission to Ed. 452, Student Teaching, which are: Psy. 101, Psy. 245, and six semester hours of mathematics.

 *See Advisor or Advisory Committee.

Requirements for B.Ed. Degree with a Major in Secondary Education

1. Humanities (Art, English, Languages, Linguistics, Music, Philosophy, Speech)
 - a. Required courses:
 - Engl. 111—Methods of Written Comm.
 - b. Recommended courses:
 - Engl. 213—Advanced Exposition
 - Phil. 201—Intro. to Philosophy
 - Sp.C. 241—Public Speaking I (3)
 - Sp.C. 211—Voice and Diction (2)

 2. Social Sciences (Anthropology, Economics, Geography, History, H.E. 236, Political Science, Psychology, Sociology)
 - a. Required courses:
 - Hist. 101-102—Western Civilization
 - Hist. 131-132—History of the U.S.
 - P.S. 101-102—Intro. to American Government and Political Science
 - Psy. 101—Introduction to Psychology
 - Psy. 246—Adolescence
 - b. Recommended courses:
 - Anth. 101—The Study of Man
 - Anth. 342—Anthropology of the Natives of Alaska
 - Econ. 121-122—Principles of Economics
 - Hist. 341—History of Alaska
 - Soc. 101-102—Introduction to Sociology
 - 3. Mathematics and Natural Sciences (Anth. 401, Biological Sciences, Chemistry, Geog. 105-401, Geology, Physics)

 4. Education (students must maintain a 2.00 grade point average (GPA) in each required Education course and an overall GPA of 2.00). (31)
 - a. Required courses:
 - Ed. 201—Orientation to Education
 - Ed. 313—Educational Psychology
 - Ed. 314—Practicum in Tutoring: Behavior Modification
 - Ed. 421—Secondary Education
 - Ed. 452—Student Teaching
 - Ed. 332—Tests and Measurements
 - Ed. 402 or 404 or 405 or 406 or 407.
 - 408—Methods

 *Candidates who have taught successfully two years in the public secondary schools may petition to be excused from Ed. 452.
 - b. Three credits from the following courses:
 - Ed. 345—Sociology of Education
 - Ed. 346—History of Education
 - Ed. 422—Philosophy of Education
 - Ed. 446—Public School Organization, Control and Support
 - Ed. 480—Education of Culturally Different Youth
 - c. Three credits of education electives selected from the following:
 - Ed. 311—Audio Visual Methods and Materials
 - Ed. 428—Principles of Practices of Guidance

 5. Teaching majors and minors (students must maintain at least a 2.00 GPA in their teaching majors):
 - Option A: Complete a teaching major of at least 28 approved credits and a teaching minor of at least 16 approved credits for a total of 51 credits of which at least 18 must be upper division. See advisor.
Degree Programs

Option B: Complete an integrated teaching major-minor of 51 approved credits. See advisor.

Major or Minor (Option A):
- Art
- Biological Sciences
- Business Education
- Chemistry
- English
- **Foreign Language**
- History

Minor Only (Option A):
- **Economics**
- *Political Science*
- *Geography*
- *Sociology*
- Journalism

Integrated Major-Minor (Option B):
- General Science
- Earth Sciences
- Social Sciences

6. Forty-eight credits of upper division courses, 24 of which must be completed at the University of Alaska.

7. Sufficient free electives to total 130 credits.

*Approved for history major only.
**Consult with head of the Department of Education.
***Approved for history and business education teaching majors only. Credit earned in fulfillment of (2), (3), and (4) above may be applied toward the teaching major and teaching minor. The student is responsible for obtaining and keeping current his copy of the courses required for his teaching major and minor. Any deviations from the specified courses must be approved by written petition to the head of the Education Department.

Requirements for Minor in Secondary Education and Minimum* Requirements for Secondary Teacher Credential Endorsement

All majors in other departments who wish to obtain an Alaskan secondary teaching certificate should confer with the head of the Education Department in their freshman year to obtain course requirements and application procedures for admission to the Teacher Education Program. It is essential that the student have the necessary prerequisites and admission to the Teacher Education Program for placement in student teaching in the public schools. The following courses should be taken at the indicated times:

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>Spring Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophomore</td>
<td></td>
</tr>
<tr>
<td>Psy. 101</td>
<td>Psy. 246</td>
</tr>
<tr>
<td>Junior</td>
<td></td>
</tr>
<tr>
<td>Ed. 313</td>
<td>Ed. 332</td>
</tr>
<tr>
<td>Senior</td>
<td></td>
</tr>
<tr>
<td>Ed. 314</td>
<td>Ed. 452</td>
</tr>
<tr>
<td>Ed. 421</td>
<td></td>
</tr>
<tr>
<td>Ed. 402, 404-405-406, 407 or 408</td>
<td></td>
</tr>
</tbody>
</table>

*See Advisor or Advisory Committee.
**Students must maintain a 2.00 GPA in these courses.

Requirements for Admission to Student Teaching

1. Elementary School — kindergarten through eighth grade:
 a. Acceptance to the Teacher Education Program.
 b. A formal application on file with the director of Student Teaching by November 1 for student teaching in the following spring semester and by March 15 for student teaching in the following fall semester.
 c. A completed physical examination.
 d. Completion of 100 credits leading to a bachelor's degree with a minimum GPA of 2.00.
 e. Completion of Psy. 101, Psy. 245, six hours in mathematics, Ed. 313, Ed. 314, Ed. 332, Ed. 409 and two other elementary methods and materials courses.
 f. A minimum GPA of 2.00 in each required psychology and each education course attempted, including a minimum GPA of 2.00 in each elementary methods and materials course attempted.
 g. Approval of Committee on Admission to Teacher Education to enter student teaching.
 h. A maximum of 12 credits is permitted while enrolled in student teaching. These 12 credits include the 6 credits granted for student teaching.

2. Secondary Schools — seventh grade through twelfth grade:
 a. Acceptance to Teacher Education Program.
 b. A formal application on file with the director of Student Teaching by November 1 for student teaching in the following spring semester and by March 15 for student teaching in the following fall semester.
 c. A completed physical examination.
 d. Completion of 100 credits leading to a bachelor's degree with a minimum G.P.A. of 2.00.
 e. Completion of a minimum of 24 approved credits in an approved teaching major with a G.P.A. of 2.00 or more.
 g. A maximum of 12 credits is permitted while enrolled in student teaching. These 12 credits include the credits granted for student teaching.
 h. A minimum GPA of 2.00 in all education courses attempted.
 i. Approval of Committee on Admission to the Teacher Education Program to enter student teaching.

Requirements for M.Ed. Degree

A person must make application for admission to graduate study and may be required to submit acceptable scores on a graduate entrance examination before he will be considered for admission to the M.Ed.
program. The program offers several options from which a person selects an area of specialization. Inquiries concerning the options available and the specific requirements of each option should be directed to the head of the Department of Education. In addition, the head of the Department of Education should be contacted concerning the procedure to be followed in applying for admission to graduate study and taking the graduate entrance examination.

Admission Requirements:
1. The equivalent of a University of Alaska Bachelor of Education degree or Alaska teaching certificate with a minimum of 24 semester hours of education courses with an average GPA of 3.00.
2. One year of satisfactory teaching experience or administrative experience in public schools.
3. Admission also may be contingent upon (1) satisfactory scores on various standardized tests and (2) a satisfactory personal interview conducted by Department of Education faculty members.

Minimum Degree Requirements:
1. Completion of a minimum of 36 credits in approved courses in a non-thesis program or 30 credits of approved courses in a thesis program.
2. Passing a comprehensive examination.
3. Completion of the general graduate degree requirements beginning on page 29.

Requirements for Master of Arts in Teaching
The Master of Arts in Teaching is designed to serve the following groups of students:
1. Baccalaureate graduates with a good general education and with majors or equivalent majors in subjects commonly taught in high school who wish to prepare for a career in secondary school classroom teaching.
2. Baccalaureate graduates with a good general education and with majors or equivalent majors in a basic academic discipline who wish to prepare for a career in elementary school classroom teaching.
3. Baccalaureate graduates who have or who can academically qualify for the Alaska secondary school certificate, who intend to make secondary school classroom teaching their career, and who wish to take additional work in their teaching major and/or minor as well as in education.
 Interested persons in the first two categories should contact the head of the Education Department for additional information; interested persons in the third category should contact the head of the department of their teaching major.

Requirements for Educational Specialist Degree in School Administration
The Ed.S. degree is designed for teachers and other educators (1) who wish to undertake graduate study beyond the master's degree; (2) who wish to qualify for an intermediate degree between the master’s and the doctorate; (3) who wish to develop further competence in one field of specialization; and (4) who wish to develop a background of knowledge in fields other than education.

Admission Requirements:
1. Applicants must be experienced educators who have successfully completed at least one year of elementary and/or secondary teaching.
2. All candidates should meet the University of Alaska Bachelor of Education degree requirements (or equivalent) for either elementary or secondary education majors with a minimum of 24 semester hours of education courses with an average GPA of 3.00.
3. A master's degree preferred but not necessary.
4. Submission to the Director of Admissions:
 a. A completed university application for admission to graduate study.
 b. Official transcripts of all previous college or university work.
 c. Three letters of reference, at least one from the most recent employer, testifying as to teaching or administrative ability.
5. Admission also will be contingent upon: (1) satisfactory scores on the aptitude section of the Graduate Record Examination and/or the Miller Analogies Test; and (2) a satisfactory personal interview conducted by Department of Education faculty members.

Minimum Degree Requirements:
1. Completion of 60 semester hours beyond the bachelor’s degree, including a minimum of 18 semester hours at the graduate level. At least 24 semester hours of work must be completed at the University of Alaska. The University may accept a maximum of 36 semester hours of transfer credit. Acceptance of transfer credits is contingent upon approval by the student’s advisory committee and by the Dean of the College of Behavioral Sciences and Education.
2. Fulfillment of the requirements of the Ed.S. degree must be completed within seven years after admission to the program.
3. Satisfactory performance on a written and/or oral examination conducted by the Department of Education faculty and representatives from the student's academic discipline is required.
Degree Programs

ELECTRICAL ENGINEERING
College of Mathematics, Physical Sciences, and Engineering

Degrees: Bachelor of Science, Master of Science, Master of Electrical Engineering

Minimum Requirements for Degrees:
B.S.—130 Credits; M.S.—30 Additional Credits; M.E.E.—162 Credits.

Modern Electrical Engineering is a diverse and changing field. Quantum Electronics, bio-electrical engineering, and optimal control theory are just a few samples of disciplines which were (only a few years ago) the exclusive domain of physicists, medical researchers, and mathematicians, but which are now basic research areas for electrical engineers.

The undergraduate program provides a sound general foundation, both physically and mathematically, so that graduating engineers have access to not just traditional applied fields of electrical engineering, but to the more modern, "exotic" areas of electrical engineering as well.

Seniors are expected to take the student engineer-in-training examination.

Graduate students may elect to follow either the M.S. or the M.E.E. curriculum. The former is better suited to those who favor specialization or further graduate study; the latter is appropriate to engineers whose goal is broad professional practice.

Requirements and Suggested Curriculum for B.S. Degree with a Major in Electrical Engineering

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall Semester</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl. 111—Methods of Written Comm.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Math. 200—Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>E.S. 101—Graphics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>E.S. 111—Engineering Science</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chemistry or Biology</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp.C. 111—Fund of Oral Comm.</td>
<td>3</td>
</tr>
<tr>
<td>Math. 201—Calculus</td>
<td>4</td>
</tr>
<tr>
<td>E.S. 102—Graphics</td>
<td>2</td>
</tr>
<tr>
<td>E.E. 109—Intro. to Elec. Engr.</td>
<td>4</td>
</tr>
<tr>
<td>or C.E. 112—Elem. Surveying</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Fall Semester</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 209—Calculus</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Phys. 211—General Physics</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>E.S. 201—Computer Techniques</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.E. 203—Fund. of Elec. Engineering</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>15 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 302—Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Phys. 212—General Physics</td>
<td>4</td>
</tr>
<tr>
<td>E.S. 208—Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>E.E. 204—Fund. of Elec. Engr.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Fall Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 333—Physical Electronics</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.E. 333—Elec. Engr. Lab I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E.E. 353—Circuit Theory I</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.S. 351—Mech. of Materials</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soc. Sci. or Humanities</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Option I: Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 331—Electricity & Magnetism</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.E. 433—High Frequency Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Option II: Power and Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 403—Elec. Power Eng. I</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.E. 334—Electronic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>E.E. 324—Elec. Engr. Lab II</td>
<td>1</td>
</tr>
<tr>
<td>E.E. 354—Circuit Theory II</td>
<td>3</td>
</tr>
<tr>
<td>Eng. 211 or 213</td>
<td>3</td>
</tr>
<tr>
<td>Soc. Sci. or Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Option I: Communications</td>
<td></td>
</tr>
<tr>
<td>E.E. 332—Electromagnetic Waves and Antennas</td>
<td>3</td>
</tr>
<tr>
<td>E.E. 434—High Frequency Lab</td>
<td>1</td>
</tr>
<tr>
<td>Option II: Power and Control</td>
<td></td>
</tr>
<tr>
<td>E.E. 404—Elec. Power Eng. II</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 405—Applied Math</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.E. 471—Fund. of Auto. Control I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soc. Sci. or Humanities</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Option I: Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.E. 403—Elec. Power Eng. I</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Option II: Power and Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phys. 331—Electricity & Magnetism</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E.E. 433—High Frequency Lab</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 406—Applied Math</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 346—Basic Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 450—Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td>Soc. Sci. or Humanities</td>
<td>3</td>
</tr>
<tr>
<td>E.E. 491—Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Option I: Communications</td>
<td></td>
</tr>
<tr>
<td>E.E. 462—Communications Systems</td>
<td>4</td>
</tr>
<tr>
<td>Option II: Power and Control</td>
<td></td>
</tr>
<tr>
<td>E.E. 472—Fund. of Auto. Control II</td>
<td>4</td>
</tr>
</tbody>
</table>
Requirements for the Master of Electrical Engineering Degree

Students selecting the Master of Electrical Engineering program will meet the general requirements of the University for the master's degree, be guided in course work and an engineering project by a personal advisor, and accumulate a total of 32 semester hours of approved courses.

Requirements for the Master of Science Degree in Electrical Engineering

A candidate for the Master of Science degree will meet the University's general requirements plus 30 semester hours of credit approved by his graduate committee, of which six to twelve semester hours will be E.E. 697, 698—Thesis.

ELECTRONICS TECHNOLOGY PROGRAM

College of Mathematics, Physical Sciences, and Engineering

Degree: Associate in Electronics Technology

Minimum Requirements for Degree:

65 Credits.

The program in electronics technology prepares people to maintain, install, and operate electronic and mechanical equipment.

For students selecting electronics technology as their area of study, emphasis will be placed on equipment such as digital computers, telemetry systems, airways control equipment, carrier telephone systems, and broadcast transmitters.

For students selecting electro-mechanics as their area of study, emphasis will be placed on precision and high speed electro-mechanical devices and systems, such as high speed printers, office machines, servo systems, fluid power systems, industrial control systems, etc.

The program is not introductory electrical or mechanical engineering, which emphasizes design; it is electronics technology, which emphasizes maintenance.

Requirements and Curriculum for an Associate Degree in Electronics Technology

First Year for Electronics Technology or Electro-Mechanics Technology

Fall and Spring Semesters 16 Credits
E.T. 151—DC Circuits ... 4
E.T. 152—AC Circuits .. 4
E.T. 157—Logic Circuits and Boolean Algebra 3
E.T. 159—Math for Electronics 5

Spring and Summer Semesters 17 Credits
E.T. 165—Semiconductor Devices and Circuits 3
E.T. 168—Electronics Practice 3
E.T. 168—Basic Circuit Theory 3
E.T. 184—Digital Computer Theory 5
Engl. 67—Elementary Exposition or Engl. 111—Methods of Written Comm. 3

Second Year for Electronics Technology

Summer and Fall Semesters 17 Credits
E.T. 275—Microwave Electronics 3
E.T. 278—Solid State Electronics 4
E.T. 281—Telemetry .. 4
E.T. 283—Waveshaping Circuits 3
E.T. 282—Communication Circuits 3

Fall and Spring Semesters 15 Credits
E.T. 287—Modern Communication Techniques 4
B.A. 165—B.A. for Tech 3
Social Science Elective ... 3

Second Year for Electro-Mechanics Technology

Summer and Fall Semesters 17 Credits
E.M.T. 273—Mechanics I 5
E.M.T. 274—Storage Principles 4
E.M.T. 276—E-M Ind. Control Dev. 4
E.M.T. 279—Fluid Power Systems 4

Fall and Spring Semesters 14 Credits
E.M.T. 285—Mechanics II 5
E.M.T. 286—Vacuum Technique Proc. 3
B.A. 165—B.A. for Tech 3
Social Science Elective ... 3

ENGINEERING MANAGEMENT

College of Mathematics, Physical Sciences, and Engineering

Degrees: Master of Science in Engineering Management, Master of Science in Science Management

Minimum Requirements for Degree:

30 Credits (Beyond a Bachelor's Degree in Engineering or a Scientific Field).

The engineering and science management curriculum is designed for graduate engineers and scientists who will hold executive or managerial positions in engineering, construction, industrial, or governmental organizations. It includes human relations, financial, economic, quantitative, technical, and
Degree Programs

legal subjects useful in solving problems of management.

The curriculum includes graduate level core courses in the subjects named above, plus additional course work either directed toward special problems such as arctic engineering, or in one of the more general fields of engineering or science through projects or research in the application of management principles. In addition to an undergraduate degree, a candidate should have had on-the-job experience in engineering or science.

Candidates for the Engineering Management degree must hold a previous degree in an engineering discipline; candidates for the Science Management degree must hold a degree in a scientific field.

Fall Semester 15 Credits
EM 605—Adv. Engineering Economy.........................3
EM 611—Engineering Management..........................3
EM 631—Engineering Law.................................3
*EM 623—Computer Programming for
Engineering Managers......................................3
**Elective ...3

Spring Semester 15 Credits
EM 612—Engineering Management..........................3
EM 613—Engineering Management..........................3
*EM 621—Operations Research.............................3
EM 694—Project ..3
**Elective ..3

*Students must complete either EM 621—Operations Research or EM 623—Computer Programming.
**Electives must have the approval of the department.

Substitutions for one or more of the courses listed above are permitted if similar courses are included in the student's previous academic background.

Writing and reading distribute ideas and make them available to all. Courses in the writing of English perfect expression, encourage creativity; the study of literature both delights and builds a regard for scholarship. Through its writing courses, its courses in language and literature, the department offers much to developing minds.

Requirements for B.A. Degree with a Major in English
1. Complete the general requirements for a B.A. degree on page 28.
2. Complete 33 credits (at least 21 credits on the 300 level or above) in English besides Engl. 211 or 213, including:
 - Engl. 201-202—Masterpieces of World Literature
 or
 - Engl. 203-204—Survey of British Literature..........6
 - Engl. 327—Colonial American Writing
 or
 - Engl. 328—19th Century American Prose
 and Poetry...3
 - Engl. 421—Chaucer
 or
 - Engl. 426—Milton..3

One course (three credits) chosen from:
 - Engl. 318—Modern Grammar................................3
 - Engl. 462—Linguistics and Literature....................3
 - Engl. 472—History of the English Language............3

A minor in English requires 18 credits besides Engl. 111 and Engl. 211 or 213, including:

 Credits
 - Engl. 201-202—Masterpieces of World Literature
 or
 - Engl. 203-204—Survey of British Literature..........6
 - Engl. 421—Chaucer
 or
 - Engl. 426—Milton..3
 - Engl. 462—Linguistics and Literature....................3
 - Engl. 472—History of the English Language............3

Requirements for M.A. Degree in English
1. A minimum of 30 credits of approved courses including Engl. 697-698, Thesis, six credits. (At the discretion of the student's committee the thesis may be replaced by an extensive reading list and six credits of course work.)
2. Completion of the general graduate degree requirements beginning on page 29.
3. Reading knowledge of a foreign language.
4. Engl. 600—Introduction to Graduate Studies in English — 3 credits.

ENGLISH
College of Arts and Letters

Degrees: Bachelor of Arts, Master of Arts, Master of Fine Arts, Master of Arts in Teaching

Minimum Requirements for Degrees:
B.A.—130 Credits; M.A.—30 Additional Credits; M.F.A.—45 Additional Credits; M.A.T.—30 Additional Credits.

82
Requirements for M.F.A. Degree in Creative Writing

1. Creative Writing Courses (12 credits):
 Engl. 675, 681, 685—Writing Drama, Fiction and Verse ... 12
 (No more than six credits may be taken in any one course.)
2. Required English courses and electives (12 credits):
 Engl. 600—Intro. to Graduate Studies in English .. 3
 Approved English electives ... 9
3. Required craft courses (6 credits):
 Engl. 381, 382, 383—Craft of Poetry, Fiction, and Drama ... 6
 (No more than three hours may be taken in any one course.)
4. Interdisciplinary electives (9 credits) ... 9
6. Reading list: comprehensive exam. (The student may, if he prefers, forego the examination over the reading list by passing an exam indicating a reading knowledge of a foreign language, and by doing a number of translations of creative work, the amount to be determined by his committee.)
Total .. 45

Requirements for M.A.T. Degree in English

This degree is designed to serve baccalaureate graduates who have qualified or who can qualify for the Alaska secondary school certificate; who intend to make secondary school classroom teaching their career; and who wish to take additional work in their teaching majors as well as in education. A minimum of 30 hours is required. An advisory committee, appointed by the head of the department, will require a minimum of 15 hours (nine of them on the graduate level) of English courses taken at the University of Alaska.

ENVIRONMENTAL HEALTH ENGINEERING PROGRAM
College of Mathematics, Physical Sciences, and Engineering

Degree: Master of Science

Minimum Requirements for Degree:
30 Credits (Beyond a Bachelor's Degree)

The environmental health engineering curriculum is designed for graduate engineers who will pursue a career in the areas of water supply, treatment, and distribution; waste treatment, stream pollution, air pollution, and solid waste disposal. Graduates will hold positions in federal, state, and municipal organizations as well as consulting engineering offices. For students having a non-engineering degree, an interdisciplinary program is available leading to the Master of Science in Environmental Health Science. Applicants should refer to the Central Requirements for Graduate study in this catalog.

Requirements for M.S. Degree in Environmental Health Engineering

1. A minimum of 30 credits of approved and required courses, including a thesis.
2. Completion of the general requirements for a graduate degree (page 29.)
3. The following required courses:
 E.H.E. 401—E.H.E. Measurements .. 4
 E.H.E. 402—Engr. Mgmt. of Water Quality .. 3
 E.H.E. 605—C/P Treatment ... 4
 E.H.E. 606—Biological Treatment ... 4
 E.H.E. 691—Seminar
 or
 E.H.E. 692—Seminar .. 1
 E.H.E. 697/698—Thesis .. 6
 Approved Electives ... 8

FISHERIES BIOLOGY
College of Biological Sciences and Renewable Resources

Degrees: Bachelor of Science, Master of Science

Minimum Requirements for Degrees:
B.S.—130 Credits; M.S.—90 Additional Credits.

The Fisheries Biology curriculum in the undergraduate program of the Department of Wildlife and Fisheries is intended to provide broad basic education and training. Holders of the bachelor's degree will be qualified to enter the management, law enforcement, and public information-education phases of fisheries work. Students contemplating careers in research, administration, advanced management, or teaching will find the bachelor's curriculum a solid foundation for graduate study.

The geographic location of the University is advantageous for the study of Interior Alaska aquatic habitats. A number of subarctic streams and lakes are within easy reach. Access to the marine environment is being obtained through the National Sea Grant Program in Prince William Sound.
Degree Programs

Adequate study collections of fishes are available, and the invertebrate collection is being rapidly expanded. Undergraduates have an opportunity for association with personnel of federal and state conservation agencies and these agencies hire a number of students for summer field work.

Fisheries play an extremely important part in the economy and recreation of Alaskans; because of this, some courses in the department will be of interest to non-major students. Under the college's National Sea Grant Program, the fisheries curriculum is being expanded to produce graduates prepared to play important roles in research and in the development and conservation of Alaska's aquatic resources.

Requirements and Curriculum for B.S. Degree with a Major in Fisheries Biology

First Year

Fall Semester 15 Credits
Biol. 107-108—Fund. of Biology .. 4
Chem. 105—General Chemistry .. 4
Engl. 111—Methods of Written Comm 3
Math. 200—Calculus .. 4

Spring Semester 15 Credits
*Biol. 210—General Physiology .. 4
Chem. 106—General Chemistry .. 4
*Biol. 239—Plant Form and Function 4
L.R. 102-103—Conservation of Natural Resources 3

Second Year

Fall Semester 12+ Credits
Biol. 271—Prin. of Ecology .. 3
Math. 203—Intro. Finite Math ... 4
Biol. 305—Invertebrate Zoology 4
W.F. 333—Lit. of Ecology and Resource Management 1

Spring Semester 13+ Credits
Biol. 205—Vertebrate Anatomy .. 3
Biol. 252—Biology of Vertebrates 4
Sp. Communications Elective ... 3
Econ. 235—Resource Economics ... 3

Third Year

Fall Semester 17 Credits
Phys. 103—College Physics .. 4
W.F. 301—Pop Dynamics & Management 3
**Foreign Language ... 3
Engl. 211 or 213—Adv. Exposition 3
Biol. 423—Ichthyology Herpetology 4

Spring Semester 13 Credits
Phys. 104—College Physics .. 4

A.S. 301—Elementary Statistics .. 3
**Foreign Language ... 3
Biol. 252—Principles of Genetics 3

Fourth Year

Fall Semester 12+ Credits
Geol. 411—General Oceanography 3
W.F. 423—Limnology ... 3
W.F. 429—Gen. Fisheries Biology 3
W.F. 493—Special Topics ... 1
W.F. 435—Water Pollution Biology 2

Spring Semester 11+ Credits
W.F. 430—Fisheries Management 3
A.S. 402—Scientific Sampling ... 3
Engl. 314—Research Writing ... 3
W.F. 436—Advances in Aquaculture 2

In addition:
1. Complete remaining B.S. Social Science/Humanities requirement.. 9
2. Either Biol. 328 (Marine Animals) or Biol. 476 (Animal Ecology) ... 3
3. Complete sufficient electives to bring the total credits to .. 130
4. A minimum of two months must be spent in the employ of an approved resource agency or in the fishing industry before a student will be eligible for a bachelor's degree. Two typewritten copies of a report on the work done and the experience gained during this time must be approved by the head of the department.

**Note prerequisite
**One year of foreign language at the university level. French, German, Russian, or Japanese are recommended. Students having 3 or 4 years of language in high school with a grade of "C" or better, may, with advisor's approval, substitute an equivalent number of credits in the humanities area.

Requirements for M.S. Degree with a Major in Fisheries Biology

1. A minimum of 30 credits of approved courses, including W.F. 697-698, Thesis, in the field of fisheries biology.
2. Complete general requirements for a graduate degree beginning on page 29.
3. Students working in subject areas involving significant non-English literature may be expected to read the appropriate foreign language.

Graduate Study in Fisheries Biology

The Department of Wildlife and Fisheries offers graduate work leading to the Master of Science degree in Fisheries Biology. In exceptional cases an interdisciplinary Doctor of Philosophy degree can also be offered. Persons desiring detailed information on the graduate program in fisheries may obtain this from the Head, Department of Wildlife and Fisheries. The
procedure to be followed in applying for admission to
graduate study is outlined in the "Degrees" section of
this catalog (page 29.)

The department offers a limited number of research
assistantships under the National Sea Grant program
involving mainly marine fisheries investigations in
Prince William Sound. At times, funds become
available from the Alaska Department of Fish and
Game, the National Marine Fisheries Service, and the
Fish and Wildlife Service for special projects.

GENERAL SCIENCE
College of Mathematics, Physical Sciences, and
Engineering

Degrees: Bachelor of Science, Master of
Science

Minimum Requirements for Degrees:
B.S.—130 Credits; M.S.—30 Additional Credits;
M.A.T.—30 Additional Credits.

Man’s insatiable curiosity and his desire to
understand the world about him have led to the
study of natural science and to the scientific
method. Progress in this study has been fruitful
and is so rapid now that the new discoveries in
science are affecting our everyday lives, and
most certainly will continue to do so in our
lifetime. Consequently, every educated citizen
needs a knowledge and appreciation of the
philosophy and structure of science. It is
generally agreed that the best method for
achieving this is by direct study of a natural
science, and most of the curricula at the
University of Alaska reflect this fact in their
requirements.

Traditionally, the role of mathematics has been
to simplify, interpret, and extend the boundaries
of science. The fact that mathematics still
includes, as well as transcends, this function
makes it a necessary study.

The major in general science has been
designed, as its name indicates, to provide an
opportunity to become familiar with a
considerable number of natural sciences and thus
provide a firm background for specialization in
any one of them as well as in certain technical
professions. The fields lying on the borders
between the older sciences provide excellent
opportunity for research. An acquaintance with
the fundamentals of all the natural sciences is of
value in teaching science in high school and
college and also in preparing for specialization in
certain of the social disciplines.

Requirements and Curriculum for B.S. Degree with
a Major in General Science

First Year

Fall Semester 16 Credits
Engl. 111—Methods of Written Comm 3
Biol. 107-108—Fund. of Biology 4
Math. 106—Algebra & Trig 5
Chem. 106—General Chemistry

or

Phys. 103—College Physics 4

Spring Semester 15 Credits
Sp.C. 111—Fund. of Oral Comm 3
Math. 200—Calculus 4
Chem. 106—General Chemistry

or

Phys. 104—College Physics 4
Electives ... 4

Second Year

Fall Semester 17 Credits
Phys. 103—College Physics

or

Chem. 105—General Chemistry 4
Econ. 121—Principles of Economics 3
Geol. 101—General Geology 4
Psy. 101—Intro. to Psychology 3
Dept. elective ... 3

Spring Semester 16 Credits
Phys. 104—College Physics

or

Chem. 106—General Chemistry 4
Geol. 112—Historical Geology 4
Soc. 101—Intro. to Sociology 4

or

Anth. 101—Study of Man 3
Electives ... 5

Third and Fourth Years

By the beginning of his junior year, each student in
general science must decide upon his major field and,
with the assistance of the person in charge of
administering the curriculum in general science, make
out a program for his third and fourth years of study.

Directions for making out the program:
1. Include the following courses: Credits
 Engl. 211—Adv. Composition with Modes
 of Literature (3) or
 Social Science and/or Humanities electives
 (3 credits must be Humanities) 6

2. The major field must comprise a minimum of 20
 credits above the foundation courses included in this
 curriculum. The courses scheduled must be approved
 in writing by the head of the major department. A
 major may be elected in anthropology, biological
 sciences, chemistry, geology, geophysics, mathematics,
 or physics.
Degree Programs

3. The electives must include either two minors of at least 12 credits each above the foundation courses included in this curriculum, or a second major. Minors may be selected in any of the major departments listed or in the fields of economics, education (minimum 16 credits), English, French, German, Russian, history, or political science.

4. All prerequisites of courses elected must be met.

5. One year of German or Russian is recommended.

6. Courses selected to complete the requirements in the social sciences must be chosen from the following: anthropology except Anth. 402 and archaeology; sociology; economics; history; and political science.

7. Physics 105-106 may alternate for Physics 103-104 and Chem. 211 may alternate for Chem. 105-106.

8. A total of 130 credits is required.

Requirements for M.S. Degree in General Science
1. Minimum of 30 credits of approved courses.
2. Completion of the general graduate degree requirements beginning on page 29.

The Department of Mathematics, Physics, Chemistry, Biological Sciences, and Geology offer work toward the Master of Science degree with a major in General Science. This degree may be described as a "breadth" rather than a "depth" degree, and a candidate is ordinarily pursuing a course of study in which one of those departments is cooperating with at least one other department within the University. A prospective candidate must meet the general requirements for admission and for the awarding of the degree. At least 21 credits must be earned in science and mathematics. At least 12 credits must be earned in the department giving the degree. A thesis (maximum of three credits) or project (no credit) must be completed in the major department. It is not intended that the individual courses merely satisfy the credit requirements; each course should contribute to the specific aim of the candidate, and the thesis or project should reflect this aim.

Requirements for M.A.T. Degree
Persons interested in this degree program should see the head of the General Science Department.

GEOGRAPHY DEPARTMENT
College of Earth Sciences and Mineral Industry

Degrees: Bachelor of Arts, Bachelor of Science; Master of Arts or Master of Science in Regional Development

Minimum Requirement for Degrees:
B.A.—130 Credits; B.S.—130 Credits; M.A.—30 Additional Credits; M.S.—30 Additional Credits.

The department offers undergraduate courses and degrees in geography, and participates in the graduate interdisciplinary program in Regional Development. Geography provides an organized picture of the earth as a whole and of its interrelated regions and activities. It deals both with the natural resources of the earth and with man's use of them. Its methodology includes the observation, measurement, description, and analysis of places or areas—their likenesses, differences, interdependence, and significance. Geography draws upon many related disciplines for needed information; in return it serves by presenting comprehensive, integrated descriptions and interpretations of the total characteristics of areas, economic units, or political entities. It thus serves as a bridge between the physical sciences and the social sciences. At the University of Alaska geography is offered as (a) part of a broad cultural background in a liberal arts curriculum; (b) as part of a comprehensive program in biological and earth sciences; (c) as background for studies in economics, history, political science, and other social sciences; (d) as preparation for teaching geography, earth science, or social science, and other social sciences; (d) as preparation for teaching geography, earth science, or social science in elementary or secondary schools; (e) as technical training for professional geographic work in government, business, or industry; (f) as preparation for further graduate study in geography, regional planning, and related disciplines. Students majoring in geography, after completing required fundamental courses, may elect such advanced work in this and other departments as will provide a concentration either in physical science or in social science.

The major in geography and regional development is an interdisciplinary program administered by the Department of Geography. It is designed to prepare undergraduates for professional careers in regional development agencies and for admission to graduate studies, particularly to the master’s program at the University of Alaska and other institutions. The program consists of 36 credits in core courses, including a senior year seminar on regional development, and 30 additional credits in related disciplines. These include economics, history, political science, land resources, earth science, and others. The integrating element in the program is the discipline of geography. Each
Degree Programs

Requirements for M.A. or M.S. Degree in Regional Development

Persons interested in these interdisciplinary degree programs should consult with the head of the Department in which concentration is planned and with the head of the Geography Department, who administers this program for the University.

GEOLOGICAL ENGINEERING

College of Earth Sciences and Mineral Industry

Degree: Bachelor of Science

Minimum Requirements for Degree:
130 Credits plus 6 Credits Summer Field Course

Graduates in geological engineering will qualify for professional work in the earth sciences with emphasis on engineering problems. The background is basic and serves as preparation for graduate studies as well as for professional employment with government or industry.

Requirements for B.S. Degree in Geological Engineering

Credits

Chem. 105—General Chemistry

or

Chem. 211—Chemical Principles

Chem. 106—General Chemistry & Introductory Qual. Analysis

or

Chem. 212—Introductory Quant. Analysis

Geol. 417—Introduction to Geochemistry

C.E. 435—Soil Mechanics

E.S. 102—Graphics

E.S. 201—Computer Techniques

E.S. 208—Mechanics

E.S. 331—Mechanics of Materials

E.S. 341—Fluid Mechanics

Engl. 111—Methods of Written Comm

Engl. 211—Advanced Composition, with Modes of Literature

or

Engl. 213—Advanced Exposition

Geol. 213—Mineralogy

Geol. 214—Petrology

Geol. 281—Geology for Engineers

Geol. 304—Geomorphology

Geol. 314—Structural Geology

Geol. 350—Geologic Field Methods

Geol. 351—Field Geology

Geol. 362—Engineering Geology

Geol. 404—Economic Geology

Geol. 406—Map & Air Photo Interpretation

87
Degree Programs

Geol. 418—Introduction to Geophysics 3
Math. 200—Calculus .. 12
Math. 302—Differential Equations 3
A.S. 301—Elementary Probability and Stat 3
Min. 108—Mining Engineering Systems 4
Min. 202—Mine Surveying
or C.E. 119—Elementary Surveying 3
Phys. 105—University Physics 8
Social Science and Humanities Electives 18
Speech Communication elective 3
*Professional Electives ... 10
**Geol. 490—Colloquium 0

Suggested Curriculum for B.S. Degree with a Major in Geological Engineering

First Year

Fall Semester 17 Credits

Chem. 105—General Chemistry
or Chem. 211—Chemical Principles 4
Engl. 111—Methods of Written Comm 3
Math. 200—Calculus .. 4
Speech Communication elective 3
*Social Science elective ... 3

Spring Semester 16 Credits

Chem. 106—General Chemistry & Intro. Qualitative Analysis
or Chem. 212—Intro. Quant. Analysis 4
E.S. 102—Graphics .. 2
Math. 201—Calculus .. 4
C.E. 112 or Min 202 .. 3
Geol. 201—Geology for Engineers 3

Second Year

Fall Semester 18 Credits

Geol. 213—Mineralogy ... 4
Math. 202—Calculus .. 4
Phys. 105—University Physics 4
Engl. 211 or 213 .. 3
**Geol. 490—Colloquium .. 0
“Geosciences Seminar”
Social Sciences elective ... 3

Spring Semester 17 Credits

E.S. 202—Mechanics ... 4
Geol. 214—Petrology ... 3
Math. 302—Differential Equations 3
E.S. 201—Computer Tech ... 3
Phys. 106—University Physics 4

Third Year

Fall Semester 16 Credits

E.S. 331—Mechanics of Materials 3
E.S. 341—Fluid Mechanics ... 4
A.S. 301—Probability & Stat 3
Social Science or Humanities elective 3
*Professional elective ... 3

Spring Semester 17 Credits

Geol. 314—Structural Geology 3

Geol. 350—Geologic Field Methods 2
Geol. 418—Intro. to Geophysics 3
Min. 102—Mining Engineering Systems 4
Social Science or Humanities elective 3
*Professional elective ... 2

Fourth Year

Summer 6 Credits

Geol. 351—Field Geology ... 6
(8 Weeks)

Fall Semester 15 Credits

Geol. 362—Engr. Geol ... 3
Geol. 304—Geomorph ... 3
C.E. 435—Soil Mech ... 3
Geol. 417—Intro. Geochm ... 3
*Professional elective ... 3

Spring Semester 14-15 Credits

Geol. 404—Econ. Geol ... 3
Geol. 408—Air Photo ... 3
Social Science elective ... 6
*Professional elective ... 2-3

*See list of professional electives on page 90.
**Students are required to register each semester after their freshman year (unless course conflicts make it impossible to register for Geol. 490).

GEOLOGY

College of Earth Sciences and Mineral Industry

Degrees: Bachelor of Arts, Bachelor of Science, Master of Science, Master of Arts in Teaching, Doctor of Philosophy

Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits plus 6 Credits Summer Field Course; M.S.—30 Additional Credits, Including Thesis; M.A.T.—30 Additional Credits; Ph.D. (Open)

Graduates in geology will have broad backgrounds in the earth sciences with firm foundations in mathematics, physics, and chemistry. There are many options available in the geological sciences, and the suggested curriculum is intended to be flexible enough so that the student can pursue his own interests as much as possible in the junior and senior years. The bachelor’s degrees should prepare one for positions with government or industry or for graduate studies. Graduate programs are tailored to the special research and study interest of the student. In addition to courses listed under the Geology Department, students should check the course listings under the Mathematics, Physics,
Chemistry, and Civil Engineering departments. Special attention is called to the courses in geophysics, listed under the Physics Department, and those in oceanography and marine geology, listed under the Oceanography and Ocean Engineering (OCN) program.

In addition to formal course work, there are many other opportunities for professional education and experience on the campus.

All serious students of the geological sciences at the University of Alaska should make it a point to keep themselves aware of the research programs and special seminars which are constantly underway at the Geophysical Institute and the Institute of Marine Science.

Requirements for B.S. Degree with a Major in Geology

Complete the following: Credits
Engl. 111—Methods of Written Comm 3
Engl. 211—Advanced Composition, with Modes of Literature or
Engl. 213—Advanced Exposition 3
Chem. 105—General Chemistry or
Chem. 211—Chemical Principles 4
Chem. 106—General Chemistry & Intro.
Qualitative Analysis or
Chem. 212—Introductory Quantitative Analysis 4
*Foreign Language ... 6
Geol. 112—Historical Geology 4
Geol. 111—Physical Geology 4
Geol. 213—Mineralogy 4
Geol. 214—Petrology 3
Geol. 304—Geomorphology 3
Geol. 314—Structural Geology 3
Geol. 315—Optical Mineralogy 3
Geol. 321—Principles of Sedimentation 3
Geol. 350—Geologic Field Methods 2
Geol. 351—Field Geology 6
Geol. 401—Invertebrate Paleontology 4
Geol. 402—Stratigraphic Paleontology 3
*Geol. 417—Introduction to Geochemistry 3
Geol. 418—Introduction to Geophysics 3
Math. 200-201-202—Calculus and
Math. 302—Differential Equations or
Math. 200-201—Calculus; Math 203—Finite Math; and A.S. 301—Elementary Probability and Statistics 15
Min. 202—Mine Surveying or
C.E. 112—Elementary Surveying 3
Phys. 105-106—University Physics or
Phys. 211-212—General Physics 8
Social Science and Humanities electives 9

Degree Programs

Speech Communication elective 3
†Professional electives 15
Electives 13

Suggested Curriculum for B.S. Degree with a Major in Geology

First Year
Fall Semester 15 Credits
Chem. 105—General Chemistry or
Chem. 211—Chemical Principles 4
Engl. 111—Methods of Written Comm 3
Geol. 111—Physical Geology 4
Math. 200—Calculus or
Math. 203—Finite Math 4
Spring Semester 15 Credits
Geol. 112—Historical Geology 4
Chem. 106—General Chemistry or
Chem. 212—Intro. Quantitative Analysis 4
Engl. 211—Advanced Composition, with Modes of Literature or
Engl. 213—Advanced Exposition 3
Math. 201—Calculus 4

Second Year
Fall Semester 18 Credits
Geol. 213—Mineralogy 4
Math. 202—Calculus or
Math. 203—Finite Math 4
Phys. 105—University Physics or
Phys. 211—General Physics 4
Social Science or Humanities elective 3
Speech Communication elective 3
Spring Semester 17 Credits
Geol. 214—Petrology 3
Math. 302—Differential Equations or
A.S. 301—Elem. Probability & Statistics 3
Min. 202—Mine Surveying or
C.E. 112—Elementary Surveying 3
Phys. 106—University Physics or
Phys. 212—General Physics 4
Elective 4

Third Year
Fall Semester 15 or 16 Credits
††Biol. 107-108—Fundamentals of Biology 4
Geol. 315—Optical Mineralogy 3
Geol. 321—Principles of Sedimentation 3
*Ger. 111—German for Reading Ability or
*Russ. 111—Russian for Reading Ability 3
Geol. 304—Geomorphology 3
Degree Programs

Spring Semester 17 Credits
††E.S. 201—Computer Techniques .. 3
Geol. 314—Structural Geology .. 3
Geol. 350—Geologic Field Methods 2
*Ger. 112—German for Reading Ability
or
*Russ. 111—Russian for Reading Ability 3
Social Science or Humanities elective 3
Electives .. 3

Summer 6 Credits
Geol. 351—Field Geology .. 6
(6 Weeks)

Fourth Year

Fall Semester 16 Credits
Geol. 401—Invertebrate Paleontology 4
††Geol. 403—Environmental Geology 3
Geol. 417—Introduction to Geochemistry 3
††Geol. 421—Principles of Seismology 3
Social Science or Humanities elective 3

Spring Semester 16 Credits
††Geol. 362—Engineering Geology 3
Geol. 402—Stratigraphic Paleontology 3
Geol. 418—Introduction to Geophysics 3
††Geol. 424—Ground Water Hydrology 3
Elective .. 4

*One year of a modern foreign language is required for graduation. Students who have completed two years of formal instruction in a modern foreign language at the high school level may petition to fulfill this requirement by taking a first year college reading examination in the language concerned.

**Majors may elect to substitute Chem. 331 for Geol. 417.

††Recommended Electives:
Biol. 107-108—Fundamentals of Biology
Chem. 331-332—Physical Chemistry
Chem. 333-334—Physical Chemistry Lab
C.E. 334—Water Resources Engineering
C.E. 412—Elements of Photogrammetry
C.E. 422—Foundation Engineering
C.E. 435—Soil Mechanics
Econ. 121—Principles of Economics
(Physics elective)
E.S. 201—Computer Techniques
E.S. 450—Engineering Management and Operations
Geol.—All courses
Math. 312—Numerical Methods for Engineers
Math. 405-406—Applied Mathematics
M.Pr. 313—Introduction to Mineral Preparation
M.Pr. 418—Emission, Spectroscopy, X-Ray Diffraction, Atomic Absorption, and Electron Microscopy
Min. 408—Mineral Valuation and Economics
Phys. 311-312—Classical Physics

Phys. 351—Introduction to Dynamic Meteorology
Phys. 465—Meteorology

Requirements for B.A. Degree with a Major in Geology
1. Complete the general requirements for a B.A. degree listed on pages 28.
2. Complete required courses in Geology as planned in individual conference with the head of the Geology Department.

A minor in Geology requires 12-16 credits of approved Geology courses.

Requirements for B.S. Degree in Geology
1. A minimum of 30 credits, including a maximum of 12 credits in Geol. 693-694, Special Topics, and Geol. 697-698, Thesis.
2. Completion of at least one course from each of the three core areas — Structural Geology, Advanced Petrology, and Advanced Stratigraphy.
3. Completion of the general requirements for a graduate degree beginning on page 29.

Requirements for Ph.D.
1. Program arranged by conference.
2. Completion of the general requirements for the Ph.D. beginning on page 30.

HEALTH, PHYSICAL EDUCATION AND RECREATION

College of Behavioral Sciences and Education

Degrees: Bachelor of Arts, Bachelor of Science

Minimum Requirements for Degrees: 130 Credits

The curriculum in physical education serves three purposes: (1) to provide students with an interest-area major, (2) to prepare qualified students to teach physical education, coach athletic teams, and direct recreational programs according to the needs of the State of Alaska, and (3) to prepare students for future enrollment in graduate physical education programs in Alaska or other states. Those students who do wish to teach physical education in the State of Alaska must satisfy the requirements for an Alaska teaching certificate by taking appropriate courses in the Department of Education.

Requirements for B.A. or B.S. Degree with a Major in Physical Education
1. Complete general requirements for a B.A. or B.S.
degree as listed on page 31. The following courses are required of Physical Education majors: Biology 107-108-201-210, Chemistry 104 or 105, or equivalent.

2. Complete 36 credits in Physical Education, as follows:

Required courses (27-30 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E. 201—Introduction to Health, Physical Education & Recreation</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 248—First Aid</td>
<td></td>
</tr>
<tr>
<td>or P.E. 440—Prevention & Care of Athletic Injuries</td>
<td></td>
</tr>
<tr>
<td>P.E. 303—Techniques in Physical Education—Team Sports</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 305—Techniques in Physical Education—Individual & Dual Sports & Activities</td>
<td>2</td>
</tr>
<tr>
<td>P.E./Ed. 308—Physical Education for the Elementary School</td>
<td>3</td>
</tr>
<tr>
<td>P.E. 311—History and Principles of Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>P.E. 400—Techniques in Physical Education—Tumbling & Gymnastics</td>
<td>2</td>
</tr>
<tr>
<td>P.E./Ed. 406—Methods of Teaching Physical Education (may count as Ed. credit)</td>
<td>3</td>
</tr>
<tr>
<td>P.E. 413—Techniques in Physical Education—Physical Conditioning & Fitness</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 421—Physiology of Exercise</td>
<td>3</td>
</tr>
<tr>
<td>P.E. 425—Organization & Administration of Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>P.E. 432—Biomechanics of Exercise and Sports</td>
<td>3</td>
</tr>
</tbody>
</table>

Two courses (4 credits) required from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E. 302—Techniques in Physical Education—Track & Field</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 304—Techniques in Physical Education—Winter Sports</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 408—Techniques in Physical Education—Aquatics</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 410—Techniques in Physical Education—Rhythms</td>
<td>2</td>
</tr>
</tbody>
</table>

Courses selected from list below to total 36 credits in P.E.:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.E. 242—Personal & Community Health</td>
<td>3</td>
</tr>
<tr>
<td>P.E. 246 or 440 (see required courses)</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 301—Theory of Coaching Basketball</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 331—Practicum in Physical Education (maximum 4 credits)</td>
<td></td>
</tr>
<tr>
<td>P.E. 331—Sports Officiating</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 332—Intramural Sports</td>
<td>2</td>
</tr>
<tr>
<td>P.E. 302, 304, 408, 410 (two not used to complete 2-course requirement above)</td>
<td>2-4</td>
</tr>
</tbody>
</table>

3. Demonstrate performance-and-knowledge competency in each of the areas listed below. Requirements are available in the department office. (Proficiency is to be obtained individually or by participation in P.E. 100 courses. P.E. 100 credits will not apply toward the major.)

Physical Fitness
Team Sports
Individual and Dual Sports and Activities
Tumbling and Gymnastics
Aquatics
Rhythms

4. Complete a minor area of study.
5. Complete elective courses to total 130 credits.

NOTE: To qualify for a State of Alaska teaching certificate, with a Physical Education major, the student must complete the following Education courses (and their prerequisites): Education 313, 314 332, 406, 421 or approved elective, and Ed. 452.

For a minor in Physical Education in one of the following degree programs, consult with Physical Education Department Head:

1. B.A. or B.S. Degree—18 credits
2. B.Ed. Degree, Secondary Education—18 credits
3. B.Ed. Degree, Elementary Education—12-24 credits

HEALTH SCIENCES, PREPROFESSIONAL CURRICULA

Professional schools of medicine and dentistry as well as many of the professional schools in paramedical fields (e.g., nursing, physical therapy) require one to three or four years of collegiate work before a student will be admitted. These years of preliminary academic work may be taken at the University of Alaska, where the student follows a sequence of courses planned to meet the requirements of the particular professional field in which he is interested. Students interested in health professions should contact the Health Sciences Preprofessional Advisor, College of Biological Sciences and Renewable Resources, before registering.

Most premedical students plan on four preliminary years. The student is encouraged to develop his major area of interest, be it in natural or social sciences or in the humanities, but in preparation for medical school he must gain a thorough understanding of the modern concepts in biology, chemistry, and physics. He is encouraged to include chemistry and physics or biology in his freshman course of study. Usually, students at the University of Alaska follow a curriculum leading to a Bachelor of Arts degree with a major in biological sciences and/or chemistry or a curriculum leading to a Bachelor of Science degree with a major in biological sciences or chemistry, earning a bachelor's degree at the end of four years. Adjustments may be made to meet varying requirements. Premedical students who are accepted in medical school prior to finishing their degree and who wish to receive a baccalaureate degree from the University of Alaska may obtain from the Dean, College of Biological Sciences and Renewable Resources, a description of the requirements which must be completed.
Degree Programs

Washington, Alaska, Montana, and Idaho Experimental Medical Extension Program (W.A.M.I.)

In September 1971 the University of Alaska started an experimental collaborative program with the University of Washington Medical School under financial support of the Commonwealth Foundation of New York. A limited number of students who have suitable baccalaureate degrees or, in some cases, senior standing will be jointly admitted to the University of Alaska and the University of Washington Medical School. They will spend the fall semester at the University of Alaska taking four courses (Medical Science 500, 515, 518, and 551) and then enter the University of Washington Medical School for an appropriate period which may range from 6 to 8 quarters. Thereafter, they will be eligible to assume "clerkships" with practitioners, clinics, or hospitals in one of the four collaborating states. Under this revised curriculum students may reduce the conventional time taken to acquire an M.D. by as much as a full year.

The Medical Science courses listed will be taught at an advanced level (graduate equivalent) and are intended primarily for W.A.M.I. students who will receive additional tutorial instruction from the faculty. However, these courses will also be open to undergraduate students in good standing, subject to permission of the instructor.

Modest financial support may be available to W.A.M.I. students during their stay at the University of Alaska, and those W.A.M.I. students establishing Alaskan residence are eligible for tuition support under a program of the Western Interstate Commission on Higher Education while staying at the University of Washington Medical School.

Further information may be obtained from the Coordinator of the W.A.M.I Program.

HISTORY

College of Business, Economics and Government

Degrees: Bachelor of Arts, Master of Arts, Master of Arts in Teaching

Minimum Requirements for Degrees:
B.A. — 130 Credits; M.A. — 30 Additional Credits; M.A.T. — 30 Additional Credits.

The History Department seeks to make the student aware of the cultural heritage of mankind, the great problems that man has faced throughout history and how he has sought to solve them.

Through the study of history, a student may prepare himself for a career in teaching, in the public service, or for advanced work in history and other social sciences.

Requirements for B.A. Degree with a Major in History

2. Complete the following foundation courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist. 101-102—Western Civilization</td>
<td>6</td>
</tr>
<tr>
<td>Hist. 131-132—History of the U.S.</td>
<td>6</td>
</tr>
<tr>
<td>Hist. 121-122—East Asian Civilization</td>
<td>6</td>
</tr>
</tbody>
</table>

3. Complete 21 upper division credits in History, including:

- Hist. 475-476—Intro. to Historical Method 6

A minor in History requires 12 credits of History electives beyond Hist. 101 and 102 or Hist. 121 and 122, six of which must be above the 100 level.

Requirements for the Master of Arts Degree In History

1. Completion of the general requirements for a graduate degree beginning on page 29.
2. Completion of a minimum of 30 semester hours of courses in history and other fields as determined by the candidate's graduate committee. The courses must include Hist. 601, Historiography, Hist. 691, Seminar in European History, and Hist. 692, Seminar in American History.
3. Completion of a satisfactory thesis for which six credit hours may be granted, or two publishable seminar papers (contact departmental chairman).
4. Successful completion of comprehensive examinations in two fields of history as determined by the candidate's graduate committee.
5. Passage of an oral examination on the thesis and general field of history.

Requirements for M.A.T. Degree

Refer to general requirements for M.A.T. degree on page 79. Persons interested in this degree program should check with the head of the department.

HOME ECONOMICS

College of Behavioral Sciences and Education

Degree: Associate in Arts, Bachelor of Science

Minimum Requirements for Degree:
A.A. — 60 Credits; B.S. — 130 Credits

The home economics curriculum stresses the development of competencies necessary to a professional home economist with special emphasis on home economics education. In addition to providing a background for service in home economics careers, provision is made for the liberal education of the student as a person, a citizen, and a family member through the
Requirements for an Associate in Arts Degree with a Major in Early Childhood Development

General Requirements:
English 111 and 211 or 213, or 67 and 68 6
Sp.C. 111 ... 3
History 101-102 or Pol. Sci. 101-102 6
Social Sciences—Psy. 101 and Soc. 101
or
Auth. 101 .. 6
Natural Science electives
Humanities electives
Other academic areas
(At least 6 credits in any 2 of the above elective areas) .. 15

Major Requirements:
H.E. 105—Survey of Child Development
Center Models .. 3
H.E. 120—Child Nutrition and Health 3
Psy. 244—Early Childhood Development 3
H.E. 155—Activities for Young Children 3
H.E. 236—Marriage and Family Life
or
Soc. 242—the Family ... 3
H.E. 250-251—Practicum in Early Childhood
Development or
B.S. 101-201—Field Observation, Field Practice 6
B.S. 220—Culture and Learning 3

Requirements and Curriculum for B.S. Degree with a Major in Home Economics

First Year
Fall Semester .. 17 Credits
Engl. 111—Methods of Written Comm 3
Biol. 107-108—Fund. of Biology 4
Math. 106 .. 5
H.E. 113—Cloth Const. & Selection I 2
*Elective ... 2

Spring Semester ... 15 or 16 Credits
Sp.C. 111—Fund. of Oral Comm 3
Bi. Elective .. 4
Math. 200 or 203 or A.S. 301 3 or 4
H.E. 102—Meal Management 3
*Elective ... 2

Second Year
Fall Semester .. 16 Credits
Engl. 211—Adv. Comp. with Modes of Lit.
or
Engl. 213—Adv. Exposition 3
Chem. 103—Contemporary Chemistry
or
Chem. 105—General Chemistry 4
H.E. 231—Interior Design 3
H.E. 241—Home Management 3
Psy. 101—Intro. to Psychology 3

Spring Semester ... 16 Credits
*Elective ... 3
Chem. 104—Contemporary Chemistry
or
Chem. 106—General Chemistry & Intro.
Qualitative Analysis ... 4
H.E. 211—Textiles .. 3
H.E. 236—Marriage & Family Life 3
Soc. 101—Intro. to Sociology 3

Third Year
Fall Semester .. 17 Credits
H.E. 312—Cloth. Const. & Selection II 3
H.E. 304—Nutrition .. 3
Econ. 121—Principles of Economics 3
*Electives ... 8

Spring Semester ... 17 Credits
H.E. 245—Child Development 3
H.E. 302—Experimental Foods 3
*Electives ... 11

Fourth Year
Fall Semester .. 17 Credits
H.E. 441—Family Health 3
H.E. 401—Consumer Education 3
*Electives ... 11

Spring Semester ... 15 Credits
H.E. 442—Household Equipment 3
*Electives ... 12

A minor is not required for the B.S. degree with a major in Home Economics.
*All electives must be approved by the head of the department and must include 3 credits in Humanities electives and 3 credits in Social Science electives.

A minor in Home Economics requires completion of the following:

H.E. 102—Meal Management 3
H.E. 113—Clothing Construction and Selection I .. 3
H.E. 236—Marriage and Family Life 3
H.E. 241—Home Management 3
H.E. 245—Child Development 3
plus 3 hours from the following:
H.E. 304—Nutrition .. 3
H.E. 401—Consumer Education 3
H.E. 441—Home Economics 3
H.E. 442—Household Equipment 3

Teaching Certificates—Home economics graduates may qualify for teaching vocational home economics. They may obtain an Alaskan teaching certificate by completing Ed. 407, Methods of Teaching Home Economics, and meeting the other requirements of the State Department of Education.
Degree Programs

INTERDISCIPLINARY STUDIES

Degrees: Bachelor of Arts, Bachelor of Science

Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits

The exceptional student with well-defined goals which do not fit into the established baccalaureate program of the University should have an opportunity to achieve baccalaureate recognition for carrying out an approved interdisciplinary program which approximates the requirements for a baccalaureate degree in an established discipline. For this purpose the B.A. or B.S. degree in Interdisciplinary Studies is offered.

Upon completion of 15 credit hours, which must be within the specific region of the University of Alaska in which the student will continue his study, and at least 60 hours prior to graduation, a student may submit to the appropriate Provost or his designated representative an interdisciplinary curriculum leading to a B.A. or B.S. degree in Interdisciplinary Studies to be taken at a baccalaureate degree granting campus of that region. The proposed curriculum must differ significantly from established degree programs in the University of Alaska system and will require evidence that the necessary facilities and faculty are available at that campus to ensure an approximation of a normal baccalaureate degree. All general requirements for the B.A. or B.S. degree must be met. The proposal may include studies elsewhere and a suggested program director and advisory committee.

The Provost will appoint to review the proposal a committee of at least three faculty members familiar with the suggested campus and interdisciplinary subject. If the curriculum is approved by the Provost, he will, in consultation with the student, appoint an advisory committee of at least three faculty members to assist the student in planning and carrying out his program. The degree title will be chosen by the advisory committee in concert with the student and with the approval of the Provost. Changes within the approved curriculum would be made only with the approval of this advisory committee. The curriculum will not be transferable to other campuses, and it is expected that a student considering this program will thoroughly investigate the strengths and capabilities of the campus at which he plans to undertake the interdisciplinary studies.

JOURNALISM
College of Arts and Letters

Degree: Bachelor of Arts

Minimum Requirements for Degree:
130 Credits

The journalism curriculum is designed to prepare students for a challenging profession which calls for a high degree of proficiency in communicating with words and pictures—while being versatile enough to allow a broad general education.

Students with diverse interests frequently find that journalism fits well into a joint educational program with many other fields.

Requirements for B.A. Degree with a Major in Journalism
2. Complete a minimum of 23 hours of credit in journalism. A maximum of 30 hours of credit in journalism courses may be counted toward a degree.
3. Complete the following courses in journalism:

 Credits
 Jour. 101—Introduction to Journalism.....................1
 Jour. 201—News Writing................................3
 Jour. 203—Basic Photography.............................3
 Jour. 212—Editing.......................................3
 Jour. 301—Reporting.....................................3
 Jour. 321—Journalism..................................1
 Jour. 324—Newspaper Production and Typography........2
 Jour. 333—Current Affairs................................3
 Jour. 413—Law of the Press..............................3

4. Complete at least three credits in the following courses:
 Jour. 401—Reporting of Public Affairs....................3
 Jour. 303—Advanced Photography........................3
 Jour. 311—Magazine Article Writing.....................3
 Jour. 320—Journalism in Perspective.....................3
 Jour. 403—Cinematography................................3
 Jour. 411—Adv. Magazine Article Writing................3
 Jour. 412—Specialized Editing............................3
 Jour. 441—Editorial and Critical Writing...............3
 Jour. 493-494—Special Topics............................3-6
5. Complete at least one 3-credit course in each of the following departments or disciplines:

- Economics
- Physical Science
- Political Science
- Psychology
- Sociology

These courses may also be entered in satisfaction of course distribution requirements listed under General Requirements for B.A. Degree, page 28.

Requirements for a Minor in Journalism
Complete the following courses in journalism:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jour. 101—Introduction to Journalism</td>
<td>1</td>
</tr>
<tr>
<td>Jour. 201—News Writing</td>
<td>3</td>
</tr>
<tr>
<td>Jour. 203—Basic Photography</td>
<td>3</td>
</tr>
<tr>
<td>Jour. 212—Editing</td>
<td>3</td>
</tr>
<tr>
<td>Jour. 301—Reporting</td>
<td>3</td>
</tr>
<tr>
<td>Jour. 333—Current Affairs</td>
<td>1</td>
</tr>
</tbody>
</table>

LAND RESOURCES AND AGRICULTURAL SCIENCE
College of Biological Sciences and Renewable Resources

The undergraduate curriculum for the first two years is designed to provide the basic science foundation on which advanced courses are based. The curriculum is intended for students who expect to prepare for careers in wildland utilization and in agriculture (see also Natural Resources curriculum). A bachelor's degree in Land Resources and/or Agricultural Science is not available at the University of Alaska.

Undergraduate Curriculum

First Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl. 111—Written Communication</td>
<td>3</td>
</tr>
<tr>
<td>Biol. 107-108—Fund. of Biology</td>
<td>4</td>
</tr>
<tr>
<td>Chem. 105—General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. 108—General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics</td>
<td>4</td>
</tr>
<tr>
<td>Biology elective or L.R. 101</td>
<td>3</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Degree Programs

Second Year

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>17 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 103—College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Geol. 101—Gen. Geology</td>
<td>4</td>
</tr>
<tr>
<td>Econ. 121—Principles of Economics</td>
<td>3</td>
</tr>
<tr>
<td>Engl. 211 or 213</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester</th>
<th>16 Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phys. 104—College Physics</td>
<td>4</td>
</tr>
<tr>
<td>*Approved elective</td>
<td>3</td>
</tr>
<tr>
<td>English elective</td>
<td>3</td>
</tr>
<tr>
<td>Social Science elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*Biology, Land Resources, Agriculture, or Wildlife.

Graduate Study in Land Resources

A program of graduate study in land resources is offered through the University's interdisciplinary graduate program. Personnel from various units of the University community participate in orienting individual students toward M.S. and interdisciplinary Ph.D. degrees. Areas include forestry, watershed, range, land use, soils, water relations, agronomy, and other aspects of natural resources sciences and agriculture. Students interested in graduate work should write to the head, Department of Land Resources and Agricultural Sciences, outlining their area of interest and study objectives and academic background. Results from the Graduate Record Examination should be provided for the formal application.

LIBERAL ARTS
College of Arts and Letters

Degree: Associate in Arts in Liberal Arts

Minimum Requirements for Degree:

60 Credits

Requirements for an Associate in Arts Degree with a Major in Liberal Arts

<table>
<thead>
<tr>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Education (14)</td>
</tr>
<tr>
<td>A. Specific Requirements</td>
</tr>
<tr>
<td>Engl. 111 and 211 or 213—Comp. and Literature</td>
</tr>
<tr>
<td>Hist. 131-132—Hist. of U.S. or P.S. 101-102—Intro. to Amer. Govt</td>
</tr>
<tr>
<td>Sp.C. 51—Basic Speech Communication Skills</td>
</tr>
<tr>
<td>B. General Requirements (18)</td>
</tr>
<tr>
<td>At least six credits each in three areas below:</td>
</tr>
<tr>
<td>Humanities</td>
</tr>
<tr>
<td>Social Studies</td>
</tr>
<tr>
<td>Natural Science</td>
</tr>
<tr>
<td>Mathematics</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
Degree Programs

II. Major in Liberal Arts

No course used to meet the General Education requirements may be used to meet the requirements of the major.

A. Specific Requirements (14-20)
 One year of foreign language 6-10
 or
 Two years of one foreign language in high school.
 Speech (Oral Communication) 3
 Formal Humanities course 4-6

B. Approved electives (six credits must be in one department) 10-16

A total of 60 credits is required for graduation.

LINGUISTICS AND FOREIGN LANGUAGES
College of Arts and Letters
(See also Alaska Native Languages)

Degree: Bachelor of Arts
Minimum Requirements for Degree:
B.A.—130 Credits

In a shrinking world Americans increasingly need to communicate directly with other peoples in order to achieve mutual understanding. Whether it be Eskimo or English, the language of a people embodies its unique culture and way of thinking and feeling. Therefore, to know only one language is to think in only one way.

Linguistics is the science of language. The study of linguistics and of foreign languages and literature liberates the student from the confines of his own culture and makes his own culture more meaningful to him.

Requirements for B.A. Degree with a Major in Linguistics

1. Complete general requirements for a B.A. degree as listed on page 28.
2. Complete 12-18 credits in each of two foreign languages; 12 credits in each foreign language will fulfill the requirement if all are at the 200 level or higher.
3. Complete 15 credits in linguistics courses.

A minor in Linguistics requires 12 credits in Linguistics.

Audio-lingual practice in the language laboratory is an integral part of all elementary and intermediate language courses.

Graduate Study in French

Graduate programs in French leading to the Master of Arts degree and the Master of Arts in Teaching degree have been approved. Due to financial limitations, however, these programs are not being offered at this time.

MATHEMATICS
College of Mathematics, Physical Sciences, and Engineering

Degree: Bachelor of Arts, Bachelor of Science, Master of Arts in Teaching, Master of Science

Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits; M.A.T.—30 Additional Credits; M.S.—30 Additional Credits.

The number of new fields in which professional mathematicians find employment grows continually. The department offers a variety of programs for students majoring in mathematics. Options exist for those who are planning careers in industry, government, or education.

In addition to the major programs, the department provides a number of service courses for the various units of the University.

Degree Requirements

In addition to meeting all the general requirements for the specific degree, certain mathematics courses are required by all mathematics majors. All electives must be approved by the Mathematics Department. Students preparing to teach mathematics in secondary
schools must take the education courses necessary to obtain an Alaskan Teaching Certificate.

Requirements for B.A. Degree or B.S. Degree with a Major in Mathematics
1. Complete the general requirements for the B.A. degree or B.S. degree as listed on pages 28 or 29.
3. Complete 18 approved credits in mathematics at the 300 level or above, at least six of which must be at the 400 level. For those electing the Secondary Education Option, all 18 credits may be at the 300 level.

A minor in Mathematics requires completion of Math. 200-201-202 in addition to six approved credits at the 300 level or above.

Suggested Curriculum for B.A. or B.S. Degree with a Major in Mathematics
First Year
Fall Semester 17 Credits
Math. 200—Calculus .. 4
Engl. 111—Methods of Written Comm 3
Humanities/Social Science elective 3
Phys. 103—College Physics 4
Electives ... 3

Spring Semester 17 Credits
Math. 201—Calculus .. 4
Speech Communications elective 3
Humanities/Social Science elective 3
Phys. 104—College Physics 4
Electives ... 3

Second Year
Fall Semester 17 Credits
Math. 202—Calculus .. 4
Engl. 211—Adv. Composition with Modes of Literature .. 3
Humanities/Social Science elective 3
Natural Science elective 4
Electives ... 3

Spring Semester 16 Credits
Math. 314—Linear Algebra 3
Humanities/Social Science elective 6
Natural Science elective 4
Electives ... 3

Third Year
Fall Semester 16 Credits
Math. 303—Intro. to Modern Algebra 3
Math. 319—Intermediate Analysis 3
Electives ... 10

Spring Semester 16 Credits
Math. 304—Intro. to Modern Algebra 3
Math. 390—Intermediate Analysis 3
Electives ... 10

Fourth Year
Fall Semester 16 Credits
Math. 403—Intro. to Real Analysis 3
Electives ... 13

Degree Programs

Spring Semester 16 Credits
Math. 404—Topics in Analysis or Topology 3
Electives ... 13

Requirements for M.A.T. Degree with a Major in Mathematics
1. Complete the general requirements for M.A.T. degree as listed on page 79.
2. Complete 30 credits in courses approved by the student's graduate committee.

Requirements for M.S. Degree with a Major in Mathematics
1. Complete the general requirements for a master's degree beginning on page 29.
2. Complete 30 credits in courses approved by the student's graduate committee.
3. Complete a final examination, including a demonstration of proficiency in mathematics at the graduate level. The means of such demonstration will be determined by the candidate and his graduate committee.

MECHANICAL ENGINEERING
College of Mathematics, Physical Sciences, and Engineering

Degrees: Bachelor of Science, Master of Science

Minimum Requirements for Degrees:
B.S.—130 Credits; M.S.—30 Additional Credits

Mechanical engineering includes the design of vehicles, engines, heating and power plants, and a wide variety of machines. Special emphasis is placed on transportation, heating, and power-generation systems suited to the environment of Alaska.

Candidates for the Bachelor of Science degree are expected to take the State of Alaska Engineer-in-Training examination during their fourth year of study.

Requirements and Curriculum for B.S. Degree with a Major in Mechanical Engineering
First Year
Fall Semester 16 Credits
Engl. 111—Methods of Written Comm 3
Math. 200—Calculus 4
E.S. 101—Graphics 2
E.S. 111—Engineering Science 3
Chemistry ... 4

97
Degree Programs

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp.C. 111</td>
<td>Fund. of Oral Comm</td>
<td>3</td>
</tr>
<tr>
<td>Math. 201</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>E.S. 102</td>
<td>Graphics</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Math. 202</td>
<td>Calculus</td>
<td>4</td>
</tr>
<tr>
<td>Humanities/Social Science elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>E.S. 201</td>
<td>Computer Techniques</td>
<td>3</td>
</tr>
<tr>
<td>Engl. 213</td>
<td>Advanced Exposition</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math. 302</td>
<td>Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>E.S. 208</td>
<td>Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>Metallurgy elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Third Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.S. 301</td>
<td>Engineering Analysis</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 331</td>
<td>Mech. of Materials</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 341</td>
<td>Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>E.S. 307</td>
<td>Elements of Elect. Engr.</td>
<td>4</td>
</tr>
<tr>
<td>Humanities/Social Science elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.E. 321</td>
<td>Industrial Processes</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 346</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 308</td>
<td>Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>M.E. 302</td>
<td>Mechanisms</td>
<td>4</td>
</tr>
</tbody>
</table>

Fourth Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.E. 401</td>
<td>Stress Analysis</td>
<td>3</td>
</tr>
<tr>
<td>M.E. 413</td>
<td>M.E. Thermodynamics</td>
<td>4</td>
</tr>
<tr>
<td>M.E. 441</td>
<td>Mass & Energy Transfer</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities/Social Science elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.E. 494</td>
<td>(Senior Project)</td>
<td>3</td>
</tr>
<tr>
<td>M.E. 402</td>
<td>Vibration</td>
<td>3</td>
</tr>
<tr>
<td>E.S. 450</td>
<td>Management</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>M.E. 492</td>
<td>Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

Requirements for the Master of Science Degree

Persons interested in this program should see the head of the department for guidance in selecting a thesis topic.

MEDICAL TECHNOLOGY

College of Biological Sciences and Renewable Resources

Degree: Bachelor of Science

Minimum Requirements for Degree:

130 Credits

To receive a Bachelor of Science degree in Medical Technology, a student must have six semesters of collegiate training at an accredited college or university, three of which must be at the University of Alaska with a GPA of at least 2.00, and he must fulfill all requirements of the University for the Bachelor of Science degree, plus the basic requirements as set forth by the Registry of Medical Technologists. The student then becomes a candidate to enter an affiliated school of medical technology, and, if accepted, registers for Biol. 401 at the University of Alaska and spends a 12-month internship at the affiliated school.

The University is affiliated with three ASCP-approved nondenominational schools of medical technology—St. Luke’s Hospital School of Medical Technology, Spokane, Washington; Tacoma General Hospital School of Medical Technology, Tacoma, Washington; and the Swedish Hospital School of Medical Technology, Seattle, Washington.

Upon the satisfactory completion of Biol. 401 and the other above-mentioned university requirements, the student is eligible to receive a Bachelor of Science degree from the University of Alaska. He also is eligible to take the registry examination as a medical technologist under standards set by the Board of Registry of the American Society of Clinical Pathologists. Upon registration, the graduate is privileged to add the initials M.T. (ASCP) after his name.

Requirements and Curriculum for B.S. Degree with a Major in Medical Technology

First Year

Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol. 107-108</td>
<td>Fund. of Biology</td>
<td>4</td>
</tr>
<tr>
<td>Engl. 111</td>
<td>Written Comm</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 105</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>Math. 106</td>
<td>College Algebra & Trig.</td>
<td>5</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Social Sci. elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chem. 106</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
</tbody>
</table>
Math. 200 or 203 or A.S. 301 3 or 4
Elective .. 1 or 2

Second Year
Fall Semester .. 16 or 17 Credits
Biol. 201—Mammalian Anatomy 3
 or
Biol. 317—Comp. Anatomy of Vertebrates 4
Chem. 212—Quantitative Analysis 4
Social Sci. elective .. 3
Elective .. 3
Humanities elective .. 3

Spring Semester .. 16 Credits
Biol. 210—General Physiology 4
Biol. 252—Genetics .. 3
Sp.C. elective ... 3
Social Science elective 3
Biol. 242—Intro. Microbiology 3

Third Year
Fall Semester .. 17 Credits
Biol. 381—Cell Biology 4
 or
Biol. 343—Gen. Bacteriology 5
*Approved Chemistry elective 4
Elective .. 2 or 3
Humanities elective .. 3
Engl. 211 or 213—Advanced Exposition 3

Spring Semester .. 16 Credits
Biol. elective .. 4
Elective .. 6
Humanities/Social Sci. elective 6

Fourth Year ... 31 or 33 Credits
Biol. 401—Medical Technology 30
Elective .. 1 or 3

*Organic Chemistry recommended.

MEDICINE
See Health Sciences, Preprofessional Curricula

MILITARY SCIENCE
College of Behavioral Sciences and Education

The Army Reserve Officers' Training Program is a cooperative effort contractually agreed to by the Army and the University of Alaska as a means of providing junior officer leadership in the interest of national security. The goal of this cooperative enterprise is the production of well-educated young men with leadership potential for positions within the national defense structure of the United States.

The program of instruction is designed to complement the student's civilian goal of obtaining a baccalaureate degree in a course of study of his own choosing by enabling him to develop those attitudes and understandings that will facilitate transition to military service. The curriculum seeks to establish a base for normal progression in the commissioned officer educational program.

Senior Division ROTC is divided into the basic course for freshmen and sophomores and the advanced course for juniors and seniors.

Basic Course—All regularly enrolled, physically fit male students, without previous military service or training, between the ages of 14 and 23 are eligible for the basic course.

Advanced Course—Those students who successfully complete the basic course may apply for enrollment in the advanced course. Applicants must be physically qualified, have the approval of their dean, and be selected by the Professor of Military Science. Veterans may be allowed credit for prior federal service in lieu of the basic course for the purpose of admission to the advanced course. A contract is required of all students enrolling in the advanced course.

Allowance—Advanced course students receive a subsistence payment monthly which presently amounts to approximately $2,000 for the two-year period.

Flight Training—The Army Flight Training Program is offered to Senior Cadets. Successful completion of the course qualifies the student for entry into the Army Aviation Program upon graduation and may qualify the student for a private pilot's license. Necessary texts, flying clothes, cost of lessons, and transportation are furnished by the Department of Military Science.

Uniforms and Equipment—Members of the basic and advanced course are furnished uniforms and texts by the Department of Military Science. Regulation gymnastics shoes available through the University Bookstore are required for Leadership Laboratory. These shoes must be purchased by the individual student.

Academic Minor—Eighteen credits in Military Science may be accepted by an academic advisor as fulfilling the graduation requirements for a minor.

Awards—Awards are made annually at Governor's Day ceremonies for outstanding achievement in the ROTC program, academic excellence, leadership, and various team awards.

ROTC Rifle Team—The ROTC Rifle Team competes in matches with both civilian and military rifle teams in the state. Postal matches with other colleges and universities are fired throughout the year. Rifles, targets, ammunition, shooting coats and gloves, and all necessary equipment are furnished by the Military Science Department at no cost to the cadet.

University of Alaska Rangers—The Ranger program is designed to permit individual cadets to further...
Degree Programs

develop their leadership and abilities by participating in additional training in more advanced military skills.
Training is conducted on-campus and at various military installations in Alaska. As the nature of the work involved is demanding, participation is voluntary.

Two-Year Program—A special program of instruction is also conducted for transfer students and others who were unable to take ROTC prior to their last two years in school. Students interested in the program are advised to consult the Professor of Military Science not later than March 1, annually.

Deferment—Students may be granted deferment from induction under the terms of the Military Selective Service Act upon enrollment in any Military Science course. Application must be made to the Professor of Military Science.

MINERAL ENGINEERING

College of Earth Sciences and Mineral Industry

Degrees: Associate in Mineral and Petroleum Technology, Bachelor of Science, Master of Science, Engineer of Mines

Minimum Requirements for Degrees:
A.M.P.T.—66 Credits; B.S.—130 Credits; M.S.—90 Additional Credits; *E.M.—Thesis and Five Years of Experience.

The two-year associate degree in mineral and petroleum technology is designed to give technical training as a first undergraduate degree. Upon completion of this program, students are qualified to serve as technicians in mineral, petroleum, and related areas.

In the mining engineering curriculum, particular emphasis is placed upon engineering as it applies to the exploration and development of mineral resources and upon the economics of the business of mining. The program requires core courses in engineering and humanities, but allows the student the choice of technical electives to develop a major in an area of exploration, mining, or mineral beneficiation.

Undergraduate Degrees—The Department of Mineral Engineering offers the Associate Degree in Mineral and Petroleum Technology and the Bachelor of Science Degree in Mining Engineering.

Graduate Degrees—The graduate program allows for the awarding of Master of Science Degrees in Mining Engineering and Mineral Preparation Engineering. The curriculum consists of core courses in engineering management with electives in mining engineering or mineral preparation, respectively. University policy pertaining to graduate study leading to a master's degree applies.

Professional Degrees—The graduate program also provides for the awarding of a professional degree, Engineer of Mines (E.M.). This degree may be conferred upon engineering graduates who present satisfactory evidence of continuous engagement in responsible engineering work for not less than five years and a satisfactory thesis.

Requirements and Curriculum for an Associate Degree in Mineral and Petroleum Technology

First Year

Fall Semester
Math. 35—Elementary Algebra 3
M.P.T. 63—Map Reading & Drafting 2
M.P.T. 65—Science for Technicians 3
M.P.T. 67—Petroleum I 3
Soc. Sci. Elective 3
Engl. 67—Elementary Exposition 3

Spring Semester
M.P.T. 62—Mineralogy & Petrology 3
M.P.T. 64—Meas. & Mapping 3
M.P.T. 68—Petroleum II 3
Engl. 68—Elementary Exposition 3
Min. 102—Mining Engineering Systems 4

Second Year

Fall Semester
M.P.T. 71—Exploration Methods 3
E.S. 101—Graphics 2
M.P.T. 75—Petroleum III 3
M.P.T. 80—Intro. Min. & Petrol. Econ 3
Math. 105—Intermediate Algebra 3
M.P.T. 69—Geog. & Geol. 3

Spring Semester
M.P.T. 72—Millling & Metallurgy 3
M.P.T. 74—Lab Inst. & Control 3
M.P.T. 76—Petroleum IV 3
M.P.T. 78—Computer Applications 3
Technical elective 3
M.P.T. 82—Field Trip 1

Requirements and Curriculum for B.S. Degree with a Major in Mining Engineering

First Year

Fall Semester
Engl. 111—Methods of Written Comm 3
Math. 200—Calculus 4
E.S. 111—Engineering Science 3
Geol. 111—Physical Geology 4
Social Sci. elective 3
Degree Programs

Petroleum Engineering—Because of recent developments in the petroleum industry in Alaska, the Board of Regents has approved the initiation of a two-year basic program in petroleum engineering at the University of Alaska. Students enrolling in petroleum engineering will normally complete the first two years of basic engineering listed in the mining engineering curriculum. This course of study may be altered to include subject matter in petroleum engineering. Upon satisfactory completion of the two-year curriculum, students may transfer to a university having a petroleum engineering program and complete their course of study without loss of time or credit.

As an alternate, students following the mining option of the Bachelor of Science degree curriculum may elect to take petroleum engineering courses as their technical electives to better prepare themselves for job opportunities in the petroleum industry of Alaska.

Selected subjects in petroleum engineering are currently offered, and it is anticipated that additional courses will be available in the near future.

Technical Electives—Mineral Preparation Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met. 312—Fire Assaying</td>
<td>2</td>
</tr>
<tr>
<td>M.Pr. 418—Em. Spec. X-Ray and A.A.</td>
<td>3</td>
</tr>
<tr>
<td>M.Pr. 431—Applied Ore Microscopy</td>
<td>2</td>
</tr>
<tr>
<td>M. Pr. 433—Coal Preparation</td>
<td>3</td>
</tr>
<tr>
<td>Min. 333—Mining & Mineral Leasing Law</td>
<td>2</td>
</tr>
<tr>
<td>Min. 403—Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>M. Pr. 493 or 494—Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>M. Pr. 406—Materials Handling</td>
<td>3</td>
</tr>
</tbody>
</table>

Technical Electives—Mining Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pet. 302—Oil Well Design & Production</td>
<td>3</td>
</tr>
<tr>
<td>Geol. 314—Structural Geology</td>
<td>3</td>
</tr>
<tr>
<td>Min. 333—Mining and Mineral Leasing Law</td>
<td>2</td>
</tr>
<tr>
<td>Min. 401—Rock Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>M.Pr. 406—Materials Handling</td>
<td>3</td>
</tr>
<tr>
<td>Min. 405—Geophys. & Geochem. Explor.</td>
<td>3</td>
</tr>
<tr>
<td>Geol. 404—Economic Geology</td>
<td>3</td>
</tr>
<tr>
<td>Pet. 201—Petrophysics</td>
<td>3</td>
</tr>
</tbody>
</table>

Technical Electives—Exploration Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol. 314—Structural Geology</td>
<td>3</td>
</tr>
<tr>
<td>Min. 333—Mining and Mineral Leasing Law</td>
<td>2</td>
</tr>
</tbody>
</table>

*Either E.S. 348 or Chem. 331 is required, depending upon student’s field of interest.

**Nine credits of technical electives must be in subject matter relative to the student’s field of major interest in the field of exploration, mining, or mineral beneficiation.

13 credits must be humanities.

A chemistry sequence of Chem. 105-106 and 212 may be selected in place of Chem. 211 and 212 listed above.
Degree Programs

Ceol. 417—Introduction to Geochemistry .. 3
Ceol. 418—Introduction to Geophysics .. 3
Ceol. 404—Economic Geology ... 3
Min. 403—Operations Research .. 3
Min. 405—Geophy. & Geochem .. 3
M. Pr. 418—Spec. Em. Spec., X-Ray, A.A 3
Min. 493 or 494—Special Topics ... 3

Requirements for M.S. Degree in Mining Preparation Engineering

Fall Semester 15 Credits
M.Pr. 601—Froth Flotation ... 3
M.Pr. 695—Min. Prep. Res ... 3
Min. 621—Adv. Min. Economics .. 3
M.Pr. 697—Thesis ... 3
*Elective .. 3

Spring Semester 15 Credits
M.Pr. 696—Min. Prep. Res ... 3
M.Pr. 606—Plant Design ... 3
*Elective .. 3
M.Pr. 698—Thesis ... 3

Completion of the general requirements for a graduate degree beginning on page 29.
*Electives will be in the field of chemistry, physics and mathematics and will be chosen to broaden the candidate's fundamental knowledge, depending upon his specific background and interest.

Requirements for M.S. Degree In Mining Engineering

Fall Semester 15 Credits
M.Pr. 695—Mineral Prep Research .. 3
Min. 621—Adv. Min. Economics .. 3
Min. 403—Operations Research .. 3
*Approved elective ... 3
Min. 697—Thesis ... 3

Spring Semester 15 Credits
E.M. 613—Engineering Management ... 3
Min. 333—Mining — Min. Leasing Law 2
*Approved electives ... 7
Min. 698—Thesis ... 3

*Electives will consist of an approved course of study which will prepare the student for one or the other of the fields of mining or exploration.

The curriculum is designed to satisfy cultural and professional objectives.

The Bachelor of Arts degree in music is a curriculum planned for those desiring a broad, liberal education with a concentration in music.

The Bachelor of Music degree in Music Education offers thorough preparation in teacher training with sufficient time to develop excellence in performance areas.

The Bachelor of Music degree offers intensive specialization for those desiring professional training in music—the vocal and instrumental major.

The Master of Arts in Teaching is designed primarily as a functional program for the public school music teacher. Areas of specialization are instrumental, vocal, music supervision, and elementary specialist. The program is determined by the student and his committee.

The various music organizations maintained by the department offer participation experiences for students in all colleges of the University. Music majors will be required to participate in at least one ensemble each semester they are enrolled. A minimum of four semesters must be in large ensembles (Band, Choir, Orchestra, Chorus), whichever are most appropriate to the student’s performance area. The remaining time may be in the ensemble of the student’s choice. Piano majors may receive ensemble credit by performing as accompanists.

At the end of the sophomore year, all music majors must demonstrate a satisfactory level of proficiency of performance in their applied major in order to advance to upper division courses in music. A student may elect to continue study at the 200 level in attempting to pass requirements for admission to upper division study.

A piano proficiency examination must be successfully completed by the end of the student’s second year in the program. This examination will consist of (1) performance of a recital composition equivalent in difficulty to a Bach two-part invention, or Clementi or Kuhlau sonatina; (2) sight reading of simple church hymn or Bach Chorales; (3) improvisation of a chordal accompaniment to a simple melody; and (4) transposition and harmonization of the same song to another key.

MUSIC

College of Arts and Letters

Degrees: Bachelor of Arts, Bachelor of Music, Master of Arts in Teaching

Minimum Requirements for Degrees:
B.A.—130 Credits; B.Mus.—130 Credits,
M.A.T.—30 Additional Credits
Students who desire to enroll in music theory courses will complete a placement examination and be allowed to enter at their appropriate level.

Requirements for B.A. Degree with a Major in Music or Music Education

For a major in Music:
1. Complete the general requirements for a B.A. degree as listed on page 28.
2. Complete 40 credits in Music including:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Mus. 131-132—Basic Theory</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 221-222—History of Music</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 321-322—Advanced Theory</td>
</tr>
<tr>
<td>2</td>
<td>Mus. 351 or 352—Conducting</td>
</tr>
<tr>
<td></td>
<td>Applied Music, to include eight credits of private lessons and eight credits of ensemble participation.</td>
</tr>
<tr>
<td>3</td>
<td>Piano proficiency examination to be completed by the end of the second year in the program.</td>
</tr>
</tbody>
</table>

For a major in Music Education:
2. Complete 40 credits in Music including:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Mus. 131-132—Basic Theory</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 221-222—History of Music</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 231-232—Advanced Theory</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 315—Music Methods and Techniques</td>
</tr>
<tr>
<td></td>
<td>Applied Music, to include six credits of private lessons and ten credits of ensemble participation, to include two semesters of a vocal ensemble.</td>
</tr>
<tr>
<td>3</td>
<td>Piano proficiency examination to be completed by the end of the second year in the program.</td>
</tr>
</tbody>
</table>

Requirements for a Bachelor of Music Degree (Performance)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Engl. 111 or equivalent and 211 or 213</td>
</tr>
<tr>
<td>3</td>
<td>Speech Communications</td>
</tr>
<tr>
<td>15</td>
<td>Arts & Letters/History electives (non-music)</td>
</tr>
<tr>
<td>15</td>
<td>Electives to be selected from two additional colleges.</td>
</tr>
</tbody>
</table>

Required Music courses:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Mus. 161-462—Applied Music (Major)</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 131-132—Basic Theory</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 221-222—History of Music</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 231-232—Advanced Theory</td>
</tr>
<tr>
<td></td>
<td>Ensembles.</td>
</tr>
</tbody>
</table>

Ten credits to be elected from the following courses:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Mus. 331-332—Form and Analysis</td>
</tr>
<tr>
<td>3</td>
<td>Mus. 431—Counterpoint</td>
</tr>
<tr>
<td>3</td>
<td>Mus. 432—Orchestration</td>
</tr>
<tr>
<td>2</td>
<td>Mus. 351 or 352—Conducting</td>
</tr>
<tr>
<td>3</td>
<td>Mus. 493-494—Lit. of Performance Area</td>
</tr>
</tbody>
</table>

Degree Programs

Mus. 493-494—Special Topics. Arr.
Piano proficiency
Electives—to bring total credits to 130 credits.

A half recital will be required in the junior year and a full recital in the senior year. The student, in his graduation recital, must demonstrate ability to perform satisfactorily in public a program of artistic merit.

Requirements for a Bachelor of Music Degree (Music Education — Secondary)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Engl. 111 or equivalent and 211 or 213</td>
</tr>
<tr>
<td>3</td>
<td>Speech Communications</td>
</tr>
<tr>
<td>15</td>
<td>Arts & Letters/History electives (non-music)</td>
</tr>
<tr>
<td>15</td>
<td>Electives to be selected from two additional colleges; must include Psy. 101 and Psy. 245</td>
</tr>
</tbody>
</table>

Required Music Courses:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Mus. 161-462—Applied Music (Major)</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 131-132—Basic Theory</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 221-222—History of Music</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 231-232—Advanced Theory</td>
</tr>
<tr>
<td>10</td>
<td>Mus. 315—Music Methods and Techniques</td>
</tr>
<tr>
<td>2</td>
<td>Mus. 331 or 332—Form and Analysis</td>
</tr>
<tr>
<td>2</td>
<td>Mus. 351 or 352—Conducting</td>
</tr>
<tr>
<td>3</td>
<td>Mus. 432—Orchestration</td>
</tr>
</tbody>
</table>

Electives—to bring total credits to 130 credits.

Requirements for a Bachelor of Music Degree (Music Education—Elementary)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Engl. 111 or equivalent and Engl. 211 or 213</td>
</tr>
<tr>
<td>3</td>
<td>Speech Communications</td>
</tr>
<tr>
<td>15</td>
<td>Arts & Letters/History electives (non-music)</td>
</tr>
<tr>
<td>15</td>
<td>Electives to be selected from two additional colleges (must include Psy. 101 and Psy. 245)</td>
</tr>
</tbody>
</table>

Required Music Courses:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Mus. 161-462—Applied Music (Major)</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 131-132—Basic Theory</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 221-222—History of Music</td>
</tr>
<tr>
<td>6</td>
<td>Mus. 231-232—Advanced Theory</td>
</tr>
<tr>
<td>10</td>
<td>Mus. 315—Music Methods and Techniques</td>
</tr>
<tr>
<td>2</td>
<td>Mus. 331 or 332—Form and Analysis</td>
</tr>
<tr>
<td>2</td>
<td>Mus. 351 or 352—Conducting</td>
</tr>
<tr>
<td>3</td>
<td>Mus. 432—Orchestration</td>
</tr>
</tbody>
</table>

Electives—to bring total credits to 130 credits.
Degree Programs

Piano proficiency
Required Education courses:
Ed. 313—Educational Psychology .. 3
Ed. 314—Practicum in Tutoring;
 Behavior Modification .. 1
Ed. 329—Test and Measurements .. 3
Ed. 309—Elementary School Music Methods 3
Ed. 409—The Teaching of Reading 3
One elementary school methods course
to be elected .. 3
One course to be selected from the following:
 Ed. 304—Literature for Children .. 3
 Ed. 311—Audio-Visual Methods and Materials 3
 Ed. 302—Language Arts for Elem Teachers 3
 Ed. 452—Student Teaching ... 6
Electives—to bring the total credits to 130 credits.

A minor in Music requires 12 hours of Music credits in
addition to 8 credits in:
Mus. 131-132—Basic Theory
 or
Mus. 123-124—Appreciation of Music 6
All music majors and minors are expected to attend
all music department recitals and concerts.
All applied music students are expected to perform in
student recitals each semester of study.

Requirements for B.S. Degree with a Major in
Natural Resources:

1. Complete the general requirements for the B.S.
degree (page 29).

2. Complete the following courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol. 107-108—Fundamentals of Biology</td>
<td>4</td>
</tr>
<tr>
<td>Biol. 271—Principles of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>Chem. 105-106—General Chemistry</td>
<td>8</td>
</tr>
<tr>
<td>Econ. 235—Resource Economics</td>
<td>3</td>
</tr>
<tr>
<td>Geol. 101 or 111—General Geology or</td>
<td></td>
</tr>
<tr>
<td>Physical Geology</td>
<td></td>
</tr>
<tr>
<td>L.R. 101—Conservation of Natural Res.</td>
<td></td>
</tr>
<tr>
<td>L.R. 311—Soils</td>
<td></td>
</tr>
<tr>
<td>L.R. 354—Introduction to the Forest System</td>
<td>3</td>
</tr>
<tr>
<td>L.R. 321—Introduction to Watershed Science</td>
<td>3</td>
</tr>
<tr>
<td>L.R. 491 or 492—Seminar</td>
<td></td>
</tr>
<tr>
<td>W.F. 301—Principles of Animal Population</td>
<td></td>
</tr>
<tr>
<td>Dynamics and Management</td>
<td></td>
</tr>
<tr>
<td>L.R. 414—Outdoor Recreation</td>
<td></td>
</tr>
</tbody>
</table>

3. Plus at least 12 credits from the following courses in
man's environment and/or resources. Approved special
topics courses may at times be applied toward this
requirement.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocn. 411—General Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>Geol. 304—Geomorphology</td>
<td></td>
</tr>
<tr>
<td>Geol. 403—Environmental Geol.</td>
<td></td>
</tr>
<tr>
<td>Min. 101—Minerals & Man</td>
<td></td>
</tr>
<tr>
<td>Min. 470—Environmental Workshop</td>
<td></td>
</tr>
<tr>
<td>Soc. 207—Population & Ecology</td>
<td></td>
</tr>
<tr>
<td>Soc. 307—Population Problems</td>
<td></td>
</tr>
<tr>
<td>Geog. 327—Cold Lands</td>
<td></td>
</tr>
<tr>
<td>Geog. 402—Man & Nature</td>
<td></td>
</tr>
<tr>
<td>Biol. 476—Animal Ecology</td>
<td></td>
</tr>
<tr>
<td>Biol. 474—Plant Ecology</td>
<td></td>
</tr>
<tr>
<td>W.F. 430—Fisheries and Their Management</td>
<td></td>
</tr>
<tr>
<td>W.F. 417—Forest and Tundra</td>
<td>2</td>
</tr>
<tr>
<td>W.F. 419—Wetlands</td>
<td>2</td>
</tr>
<tr>
<td>W.F. 435—Water Pollution Biol.</td>
<td>2</td>
</tr>
</tbody>
</table>

4. Plus a minimum of 12 credits in one of the following
fields beyond those taken to fulfill numbers 2 and 3
above. These courses are to be selected for their clear
pertinence to a cohesive program in resource study and
must be approved by the Head of the Department of
Land Resources.

Anthropology (cultural)
Economics
Geography
Sociology
Psychology
Business Administration
Political Science
Police Administration
Education
Broadcasting, Journalism
Biological Sciences
Wildlife and Fisheries

NATURAL RESOURCES

College of Biological Sciences and Renewable
Resources

Degree: Bachelor of Science
Minimum Requirements for Degree:
130 Credits

The natural resources curriculum is designed to
provide the student with a broad training in the
various land resources and their related applied
fields (land planning, conservation, watershed
management, forestry, outdoor recreation and
agriculture) and the sciences basic to these.
Programs can be tailored to specific interests of
students and can lead toward careers in general
resource management, resource
communications, conservation education, or
several of the individual fields included.

Opportunities for summer employment are
available through various state and federal
agencies and through the University's Institute of
Agricultural Sciences.
The total program must include a minimum of 12 credits in the following social sciences: anthropology, economics, sociology, political science, and/or psychology. Courses must include one relating man’s culture to his environment, and one dealing with human population characteristics and dynamics.

NORTHERN STUDIES
Interdisciplinary Program

Degree: Bachelor of Arts
Minimum Requirements for Degree:
130 Credits

The purpose of the Northern Studies program is to give interested students a broader study of the northern region—its environment, peoples, and problems. The major in Northern Studies is a composite and interdisciplinary one. Students must meet the prerequisite requirements set by each department for particular upper division courses.

Members of the Northern Studies Advisory Committee are W. R. Hunt, chairman; Claus M. Naske, interim chairman; John Cook, Donald Lynch, Michael Krauss, Lee Salisbury, Dave Murray, Ron Senungetuk, Charles Keim, Thomas Morehouse, Elbert Rice, and student representatives Eric Van Veenen and Stephen Braund.

Requirements for B.A. Degree with a Major in Northern Studies
1. Complete the general requirements for a B.A. degree listed on page 28.
2. Complete the following foundation courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anth. 326—Arctic Ethnology</td>
<td>3</td>
</tr>
<tr>
<td>Geog. 327—Cold Lands</td>
<td>3</td>
</tr>
<tr>
<td>Hist. 375—History of the North Pacific</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Participate in the following seminars during the junior or senior year:

<table>
<thead>
<tr>
<th>Seminar</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist. 491—Northern Studies Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Hist. 492—Northern Studies Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Degree Programs

Oceanography & Ocean Engineering Program
College of Mathematics, Physical Sciences, and Engineering

Degrees: Master of Science (Interdisciplinary Degree) Doctor of Philosophy (Interdisciplinary Degree).
Degree Programs

The purpose of the program in oceanography and ocean engineering is to train ocean engineers at the M.S. level and oceanographers at the M.S. and Ph.D. levels. The program in oceanography and ocean engineering is coordinated by an interdisciplinary committee of the University composed of selected staff members from the academic colleges and research institutes involved in these areas of graduate training.

Graduate students for this program are selected on the basis of their backgrounds and on the basis of the University's capabilities to meet the selected needs of the individual student. Each student's application for admission to graduate study must be approved by an admission committee selected from members of the program's coordinating committee.

Excellent graduate training opportunities in oceanography and ocean engineering are offered by the University through the Institute of Marine Science and the instructional colleges of the University. The Institute of Marine Science has a staff of scientists and engineers actively engaged in oceanographic research work progressing at the Fairbanks campus of the University, at the Marine Station in Douglas, and on research vessels at sea. The departments of chemistry, physics, geology, biological sciences, electrical engineering, civil engineering, engineering management, and mathematics contribute academic courses to this program.

At the M.S. level, the program emphasizes ocean-related course work in both the oceanography and ocean engineering areas. However, additional graduate courses are recommended in the area of the student's undergraduate training to assure a high level of competence in his primary subject.

This department offers four courses of study in order to meet the different needs of those who plan to specialize in the field of office operations. (1) an extensive four-year program leading to the degree of Bachelor of Arts with a major in office administration. The objective of the curriculum is to provide the students with the knowledge, skills, and abilities required of the efficient office administrator or executive secretary. (2) a four-year course leading to the degree of Bachelor of Arts with a major in business education. The objective of the curriculum is to prepare young men and women for the teaching of business subjects in the secondary schools. (3) an intensive two-year program in office administration leading to an Associate in Office Administration degree with a major in office administration. (4) a one-year certificate issued after completion of 30 credits with emphasis placed on typewriting, machine transcription, filing, and the English language.

Requirements for B.A. Degree with a Major in Office Administration or Business Education
1. Complete the requirements for the B.A. degree listed on page 28.
2. Complete the following foundation courses:

 Credits

 Psy. 101—Introduction to Psychology
 or
 Soc. 101—Introduction to Sociology3
 P.S. 101—Introduction to American Govt.
 and Political Science3
 Econ. 121-122—Principles of Economics6
 Econ. 221—Introduction to Statistics
 for Economics and Business3
 Math. 110—Mathematics of Finance3
 Mathematics and/or natural science
 (lab science) electives8

3. Complete the following core courses:
 O.A. 105-106—Intermediate & Adv. Typewriting .6
 O.A. 231—Business Communications3
 O.A. 203—Office Machines3
 O.A. 292—Introduction to Data Processing3
 Acct. 101-102—Intro. to Accounting6
 B.A. 325—Financial Management3
 B.A. 331—Business Law3
 B.A. 343—Marketing3
 B.A. 361—Industrial Relations
 or
 B.A. 480—Organization Theory3

4. Complete one of the following majors:
 A. Office Administration
 O.A. 101-102-201—Beginning, Intermediate
 and Advanced Shorthand11
Requirements for One-Year Certificate In Secretarial Service

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engi. 111-Methods of Written Comm</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Engi. 67-Methods of Written Comm</td>
<td>3</td>
</tr>
<tr>
<td>Sp.C. 51-Basic Speech Comm Skills</td>
<td>2</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engi. 68-Business Communication</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 106-Advanced Typewriting</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 86-Machine Transcription</td>
<td>3</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>O.A. 201-Advanced Shorthand</td>
<td>4</td>
</tr>
<tr>
<td>O.A. 89-Office Practice</td>
<td>6</td>
</tr>
</tbody>
</table>

Requirements for Office Administration Minor

A minor in Office Administration consists of the following 22 credits:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.A. 102-Intermediate Shorthand</td>
<td>4</td>
</tr>
<tr>
<td>O.A. 105-Intermediate Typewriting</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 106-Advanced Typewriting</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 203-Machine Trans. & Filing</td>
<td></td>
</tr>
<tr>
<td>O.A. 63-Adding and Calculating Machines</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 205-Advanced Calculating Machines</td>
<td></td>
</tr>
<tr>
<td>O.A. 204-Executive Secretarial Procedures</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 231-Business Communications</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 203-Office Machines</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 103-Elementary Typewriting</td>
<td>3</td>
</tr>
<tr>
<td>O.A. 104-Advanced Typewriting</td>
<td>3</td>
</tr>
</tbody>
</table>

Requirements for Associate Degree in Office Administration

A. Complete the following general requirements:

1. Acct. 101-102-Elementary Accounting
 or Acct. 051-052-Intro. to Accounting
 or Econ. 101-Intro. to Current Economic Problems
 or Econ. 121-Principles of Economics I
 2. Speech elective
 3. Three credits from the following courses:
 Econ. 122-Principles of Economics II
 P.S. 101-Intro. to American Government and Political Science
 B.A. 331-Business Law
 4. Six credits from the following courses:
 Engi. 067-Elementary Exposition
 or Engi. 111-Methods of Written Comm
 or Engi. 068-Elementary Exposition
 or Engi. 211-Advanced Composition
 or Engi. 213-Advanced Exposition
 5. Three credits from the following courses:
 Soc. 101-Intro. to Sociology
 Psy. 101-Intro. to Psychology
 6. Mathematics elective

B. Complete the following requirements in major:*O.A. 101-Beginning Shorthand
 O.A. 102-Intermediate Shorthand
 *O.A. 201-Advanced Shorthand
 O.A. 202-Advanced Dictation and Transcription
 O.A. 203-Office Machines
 O.A. 103-Elementary Typewriting
 O.A. 104-Advanced Typewriting

C. Approved electives to bring the total number of credits to 130.

Degree Programs

O.A. 105-Intermediate Typewriting
O.A. 106-Advanced Typewriting
O.A. 203-Office Machines
O.A. 63-Adding and Calculating Machines
O.A. 205-Machine Transcription and Filing
O.A. 231-Business Communications
O.A. 302-Exec. Secretarial Procedures

*O.A. 201 Advanced placement to O.A. 202 with permission of instructor.

**A student who has received credit at other institutions for, or who can demonstrate proficiency in O.A. 101, 102, 103, or 105 will not be required to take these courses but must substitute the equivalent number of approved credits.
Degree Programs

PEACE ARTS
Interdisciplinary Program

Degree: Bachelor of Arts
Minimum Requirements for Degree: 130 Credits

This program has been established by the University of Alaska as its contribution toward a more peaceful world. It is designed to prepare students for a professional career in achieving and maintaining peace, while at the same time affording a good liberal arts background to those wishing to pursue other careers. The program is administered by a committee composed of representatives from all participating colleges.

At present students majoring in this program must specialize in the U.S., Europe, the U.S.S.R. or Japan. It is planned to expand the program to include Latin America and the Moslem World.

Requirements for B.A. Degree with a Major in Peace Arts
1. Complete the general requirements for B.A. degree as listed on page 28.
2. Complete the following core courses (18 credits):
 P.S. 201-202—Comparative Politics
 P.S. 321-322—International Affairs
 Econ. 121-122—Principles of Economics
 Geog. 405—Political Geography
 Hist. 334—Diplomatic History of the U.S.
 Pc.A. 491-492—Peace Arts Seminar
3. Complete the following regional courses (6-22 credits):
 Two years of a foreign language (or receive credit by examination).
 One semester course in history of area in which the language is spoken.
 One semester course in geography of area in which the language is spoken.
4. Complete 12 credits from the following courses or alternatives approved by the Program Advisor:
 Anth. 202—Cultural Anthropology
 Anth. 203 or 204—World Ethnography
 Anth. 428—Psychological Anthropology
 Anth. 239—Language and Culture
 Econ. 337—Economic Development
 Econ. 493—Comparative Economic Systems
 Econ. 463—International Economics
 Econ. 455—History of Economic Thought
 Geog. 101—Introductory Geography
 Geog. 103—World Economic Geography
 Hist. 101 or 102—Western Civilization
 Hist. 450—Twentieth Century America
 Phil. 484—Philosophy of History
 P.S. 301—Latin American Governments and Politics
 One year of related foreign language at 300 level or above.

PHILOSOPHY
College of Arts and Letters

Degree: Bachelor of Arts
Minimum Requirements for Degree: 130 Credits.

The courses in philosophy are designed to confront the student with the fundamental problems of Western philosophical heritage and introduce him to independent reflection on them, thus broadening his perspectives for the various areas of specialization in science, the social sciences and humanities.

Requirements for B.A. Degree with a Major in Philosophy
1. Complete the general requirements for a B.A. degree as listed on page 28.
2. Complete a year sequence in mathematics.
3. Complete 33 credits in Philosophy, including:

 Credits
 Phil. 201—Introduction to Philosophy..........................3
 Phil. 202—Introduction to Eastern Philosophy.............3
 Phil. 204—Introduction to Logic................................3
 Phil. 351-352—History of Philosophy..........................6
 Phil. 471—Contemporary Philosophical Problems................3
 Phil. 493 or 494—Special Topics................................3
 Choose two courses out of the following:
 Phil. 321—Aesthetics...3
 Phil. 332—Ethics..3
 Phil. 341—Epistemology..3
 Phil. 342—Metaphysics..3
 Choose two of the following:
 Phil. 481—Philosophy of Science..............................3
 Phil. 482—Comparative Religion................................3
 Phil. 483—Philosophy of Social Sci............................3
 Phil. 484—Philosophy of History..............................3

A minor in Philosophy requires 18 credits of approved Philosophy courses including:

 Credits
 Phil. 201—Introduction to Philosophy..........................3
 Phil. 351-352—History of Philosophy..........................6
 Phil. 471—Contemp. Philosophical Prob.........................3
Choose six credits from the following:
- Phil. 202—Intro. to Eastern Philosophy 3
- Phil. 204—Introduction to Logic 3
- Phil. 321—Aesthetics 3
- Phil. 332—Ethics ... 3
- Phil. 341—Epistemology 3
- Phil. 342—Metaphysics 3
- Phil. 481—Philosophy of Science 3
- Phil. 482—Comparative Religion 3
- Phil. 483—Philosophy of Social Sci 3
- Phil. 484—Philosophy of History 3
- Phil. 493—Special Topics Arr.
- Phil. 494—Special Topics Arr.

PHYSICAL EDUCATION
See Health, Physical Education, and Recreation.

PHYSICAL THERAPY
See Health Sciences, Preprofessional Curricula.

PHYSICS
College of Mathematics, Physical Sciences, and Engineering

Degrees: Bachelor of Arts, Bachelor of Science, Master of Science, Master of Arts in Teaching, Doctor of Philosophy

Minimum Requirements for Degrees:
- B.A.—130 Credits; B.S.—130 Credits; M.S.—30 Additional Credits; M.A.T.—30 Additional Credits; Ph.D.—No Fixed Credits.

The science of physics is concerned with the nature of matter and energy and encompasses all phenomena in the physical world from elementary particles to the structure and origin of the universe. Physics provides, together with mathematics and chemistry, the foundation of work in all fields of physical science and engineering, and contributes to other fields such as biology, geology, and marine science.

Undergraduate Program—The undergraduate curriculum aims at a good foundation in general physics with emphasis on the experimental aspects. It provides opportunities for careers in education and industry, and opens the door to advanced work in physics and related sciences.

Graduate Program—The graduate work is intimately connected with the research activities of the Geophysical Institute which offer ample thesis material in the fields of the atmospheric and space sciences, experimental atomic and molecular physics, and in solid earth physics. The research program of the Geophysical Institute currently emphasizes investigations of auroral and ionospheric physics, magnetism and earth currents, radio wave propagation and scattering, solar radio astronomy and solar-terrestrial relations, polar meteorology and glaciology and solid earth physics, and laboratory studies of atomic and molecular interactions.

A graduate student may designate his major field as physics or geophysics. He will pursue his studies under the supervision of an advisory committee consisting of his major professor (chairman), two approved faculty members, and the department head (ex officio). The committee advises on the course of study to be followed and determines the background courses (mathematics, physics, astronomy, chemistry, geophysics) necessary to support the major field.

Requirements for B.A. Degree with a Major In Physics
1. Complete the general requirements for a B.A. degree listed on page 28.
2. Complete the following foundation courses: Phys. 211-212—General Physics 8
3. Complete a minor in Mathematics, which includes Math. 200-201-202, and six credits at the 300 level or above.
4. Complete 20 credits of approved courses in Physics.

Requirements for B.S. Degree with a Major In Physics
1. Complete the general requirements for a B.S. degree listed on page 29.
2. Complete Math. 200-201-202, 302 and 9 additional credits at the 300 level or above.
3. Complete the following courses in Physics: Phys. 211-212, 311-312-313, 331-332, 411-412, 445, 381 and 382 or 481-482.

A minor in Physics requires 12-16 credits.

Suggested Curriculum for B.S. Degree with a Major in Physics

<table>
<thead>
<tr>
<th>First Year</th>
<th>Fall Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engl. 111—Methods of Written Comm</td>
<td>3</td>
</tr>
<tr>
<td>Phys. 105—University Physics</td>
<td>4</td>
</tr>
</tbody>
</table>
Degree Programs

Math. 200—Calculus ... 4
Chem. 105—General Chemistry 4
Free electives ... 2

Spring Semester 17 Credits
Phys. 106—University Physics 4
Math. 201—Calculus .. 4
Chem. 106—General Chemistry & Intro.
Qualitative Analysis .. 4
Free electives ... 2

Second Year

Fall Semester 16 Credits
Math. 202—Calculus .. 4
Phys. 211—General Physics .. 4
Engl. 211—Advanced Composition with
Modes of Literature
or
Engl. 213—Advanced Exposition 3
Humanities/Social Science elective 3
Free electives ... 2

Spring Semester 16 Credits
Math. 302—Differential Equations 3
Phys. 212—General Physics .. 4
Humanities/Social Science electives 9
Free electives ... 3

Third Year

Fall Semester 17 Credits
Math. 405—Applied Mathematics 3
Phys. 313—Classical Physics 4
Phys. 331—Electricity and Magnetism 3
Phys. 381—Physics Laboratory 2
Humanities/Social Science electives 3
Free electives ... 2

Spring Semester 16 Credits
Math. 408—Applied Mathematics 3
Phys. 445—Solid State Physics and Physical Electronics 3
Phys. 332—Electricity and Magnetism 3
Phys. 382—Laboratory ... 2
Humanities/Social Science electives 3
Free electives ... 2

Fourth Year

Fall Semester 15 Credits
Phys. 411—Modern Physics .. 4
Phys. 311—Classical Physics 4
Math elective ... 3
Free electives ... 4

Spring Semester 16 Credits
Phys. 412—Modern Physics .. 4
Phys. 312—Classical Physics 4
Free electives ... 8

Requirements for M.S. Degree in Physics or Geophysics
1. A minimum of 30 credits of approved courses, including Phys. 697 or 698, Thesis.
2. Completion of the general requirements for a graduate degree beginning on page 29.

Requirements for M.A.T. Degree
Persons interested in this degree program should see the head of the department.

Requirements for Ph.D. Degree in Physics or Geophysics
Completion of the requirements for the doctoral degree beginning on page 30.

POLICE ADMINISTRATION PROGRAM

College of Business, Economics, and Government

Degree: Associate in Arts
Minimum Requirements for Degree:
65 Credits

Requirements for A.A. Degree with a Major in Police Administration

Credits
1. General Requirements: 32 credits
 • English ... 6
 • Speech ... 2
 • Political Science 101-102 6
 • Psychology 101 3
 • Sociology 101 3
 • At least six credits in either two of the following areas:
 Natural Science, Math, Humanities or other ... 12
2. Elective Courses in Social Science: 12 credits
 • Psychology
 • Sociology
 • Political Science
 • Anthropology
 • Behavioral Science
3. Core Courses: 12 credits
 • P.A. 110—Intro. to Criminal Justice 3
 • P.A. 251—Criminology
 or
 • P.A. 151-C—Intro. to Criminology 3
 • P.A. 252—Criminal Law 3
 • P.A. 254—Procedural Law 3
4. Elective Courses in Police Administration: 9 credits
 • P.A. 150—Police Administration 3
 • P.A. 156-C—Patrol Procedures 3
 • P.A. 159-C—Organization, Management, and Administration ... 3
 • P.A. 255—Criminal Investigation 3
 • P.A. 257—Traffic Safety 3
 • P.A. 258—Juveniles and the Law 3
 • P.A. 259—Administrative Concepts 3
 • Soc. 210—Principles of Correction 3
These requirements can be fulfilled, through Correspondence Study, to a maximum of 15 credits.

**These courses are offered in Correspondence Study only.

**These courses are available for Correspondence Study also.

Requirements for a Minor In Police Administration

1. Complete 12 credits in Police Administration including:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.A. 110—Intro. to Criminal Justice</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 251—Criminology</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 252—Criminal Law</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 254—Procedural Law</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Complete 9 credits of electives in Police Administration from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.A. 150—Police Administration</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 255—Criminal Investigation</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 257—Traffic Safety</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 258—Juveniles and the Law</td>
<td>3</td>
</tr>
<tr>
<td>P.A. 259—Administrative Concepts</td>
<td>3</td>
</tr>
<tr>
<td>Soc. 210—Principles of Correction</td>
<td>3</td>
</tr>
</tbody>
</table>

POLITICAL SCIENCE
College of Business, Economics, and Government

Degree: Bachelor of Arts

Minimum Requirements for Degree:

130 Credits

The study of political science is the study of man's efforts to create social organizations and processes compatible with his environment. Political science is related to all of the social science disciplines. It is the study of the dynamics of human behavior in the various cultural, national, and international spheres.

The student of political science may prepare for teaching or for advanced study in law and social science, or prepare himself for a career in public service.

Requirements for B.A. Degree with a Major in Political Science

1. Complete the general requirements for a B.A. degree listed on page 28.

2. Complete the following foundation courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist. 101-102—Western Civilization</td>
<td>6</td>
</tr>
<tr>
<td>Hist. 131-132—History of the U.S.</td>
<td>6</td>
</tr>
<tr>
<td>Econ. 121-122—Principles of Economics</td>
<td>6</td>
</tr>
</tbody>
</table>
| Basic courses in philosophy, sociology and psychology are strongly recommended for majors. Also, a course in statistical interpretation is considered essential to those contemplating graduate study.

3. Complete the following required courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.S. 101-102—Intro. to Amer. Govt. and Political Science</td>
<td>6</td>
</tr>
<tr>
<td>P.S. 201—Comparative Politics: Methods of Political Analysis</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 202—Comparative Politics: Contemporary Doctrines and Structures</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 321-322—International Politics</td>
<td>6</td>
</tr>
<tr>
<td>P.S. 401-402—Political Behavior</td>
<td>6</td>
</tr>
<tr>
<td>Six credits in Political Theory from the following:</td>
<td>6</td>
</tr>
<tr>
<td>P.S. 315, 411, 412, 415</td>
<td></td>
</tr>
</tbody>
</table>

A minor in Political Science requires 15 hours of credit distributed as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.S. 101-102—Intro. to American Govt. and Political Science</td>
<td>6</td>
</tr>
<tr>
<td>P.S. 201 or 202—Comparative Politics: Political Analysis and Doctrines and Structures</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 321 or 322—International Politics</td>
<td>3</td>
</tr>
<tr>
<td>Three credits in Political Theory from the following:</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 315, 411, 412, or 415</td>
<td></td>
</tr>
</tbody>
</table>

PSYCHOLOGY
College of Behavioral Sciences and Education

Degrees: Bachelor of Arts, Bachelor of Science

Minimum Requirements for Degrees:

B.A.—130 Credits; B.S.—130 Credits

Psychology seeks to guide the student in an understanding of human behavior. The field of psychology is necessary for students who are preparing for graduate study in psychology and also is helpful in preparing for other career fields.

*Requirements for B.A. Degree or B.S. Degree with a Major in Psychology

1. Complete general requirements for a B.A. or B.S. degree listed on page 28 or 29.
Degree Programs

2. Complete 30 credits in Psychology beyond Psy. 101 and 201, including:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psy. 251—Intro. Statistics for Behavioral Sciences (Soc)</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 261—Intro. to Experimental Psy</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 406—Theories of Personality</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 464—Learning</td>
<td>3</td>
</tr>
</tbody>
</table>

Clinically-Oriented Courses: Complete 9 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psy. 245—Child Development</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 246—Adolescence</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 302—Social Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 338—Abnormal Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 373—Psychological Testing</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 433—Clinical Psychology</td>
<td>3</td>
</tr>
</tbody>
</table>

Experimentally-Oriented Courses: Complete 9 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psy. 301—History and Systems of Psy</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 362—Intermediate Experimental Psy</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 407—Motivation</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 465—Comparative and Physiological Psychology</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 466—Perception</td>
<td>3</td>
</tr>
<tr>
<td>Psy. 473—Social Science Research</td>
<td>3</td>
</tr>
</tbody>
</table>

3. Complete nine credits from the following: one course each from Anthropology, Philosophy and Sociology.

4. A minor is not required for the B.S. degree with a major in Psychology.

A minor in Psychology requires 15 credits in Psychology beyond Psy. 101 and 201.

*A Psychology/Sociology course cross-referenced in both fields can be used only once when the major and minor are in Psychology/Sociology.

RUSSIAN STUDIES

Interdisciplinary Major Program

Degree: Bachelor of Arts

Minimum Requirements for Degree:
130 Credits

Requirements for B.A. Degree with a Major in Russian Studies

1. Complete general requirements for B.A. degree as listed on page 28.
2. Complete the following core courses (24 credits):

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anth. 329—Peoples of Central and Northern Asia</td>
<td>3</td>
</tr>
<tr>
<td>Geog. 306—Geography of the Soviet Union</td>
<td>3</td>
</tr>
<tr>
<td>Hist. 261—Russian History</td>
<td>3</td>
</tr>
<tr>
<td>Hist. 344—Twentieth Century Russia</td>
<td>3</td>
</tr>
<tr>
<td>Russ. 301—Advanced Russian*</td>
<td>3</td>
</tr>
<tr>
<td>Russ. 302—Advanced Russian*</td>
<td>3</td>
</tr>
<tr>
<td>Russ. 321—19th Century Russian Lit.</td>
<td>3</td>
</tr>
<tr>
<td>Russ. 322—20th Century Russian & Soviet Literature</td>
<td>3</td>
</tr>
</tbody>
</table>

*Students must complete two years of Russian language study (Russ. 101-102, 201-202) or equivalent as a prerequisite for Russ. 301-302.

3. Complete at least 12 credits from the following courses or alternatives as approved by the Program Advisor:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Econ. 423—Comparative Economic Systems</td>
<td>3</td>
</tr>
<tr>
<td>Geog. 405—Political Geography</td>
<td>3</td>
</tr>
<tr>
<td>Hist. 315—Europe 1914-1945</td>
<td>3</td>
</tr>
<tr>
<td>P.C.A. 491—Peace Arts Seminar</td>
<td>3</td>
</tr>
<tr>
<td>P.C.A. 492—Peace Arts Seminar</td>
<td>3</td>
</tr>
<tr>
<td>Phil. 471—Comparative Philosophical Problems</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 202—Comparative Politics: Contemporary</td>
<td>3</td>
</tr>
<tr>
<td>Doctrines and Structures</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 321—International Politics</td>
<td>3</td>
</tr>
<tr>
<td>P.S. 322—International Politics</td>
<td>3</td>
</tr>
<tr>
<td>Russ. 351—The Russian Novel</td>
<td>3</td>
</tr>
<tr>
<td>Russ. 362—Russian Drama in English Trans</td>
<td>3</td>
</tr>
</tbody>
</table>

SOCIOCY

College of Behavioral Sciences and Education

Degrees: Bachelor of Arts, Bachelor of Science

Minimum Requirements for Degrees:
B.A.—130 Credits; B.S.—130 Credits.

Sociology is the study of groups and their influence on personal behavior and culture. It is concerned with social processes which give rise to and shape man's language, experience, perception, meaning, and behavior.

*Requirements for B.A. Degree or B.S. Degree with a Major in Sociology

1. Complete general requirements for a B.A. or B.S. degree as listed on page 28 or 29.
2. Complete 30 credits in Sociology beyond Soc. 101-102, including:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soc. 251—Intro. Statistics for Behavioral Sciences (Psy.)</td>
<td>3</td>
</tr>
<tr>
<td>Soc. 302—Social Psychology (Psy.)</td>
<td>3</td>
</tr>
<tr>
<td>Soc. 304—Culture and Personality</td>
<td>3</td>
</tr>
</tbody>
</table>
I
-...
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Degree Programs

4. A Speech major may elect to take an option in Drama by adding the following courses to those specifically required in No. 2 (above):
 - Thr. 221—Acting I .. 3
 - Thr. 241—Basic Stagecraft 3
 - Thr. 351—Make-up for Theatre 3
 - Thr. 331—Directing
 or
 - Thr. 321—Acting II ... 3

5. A Speech major may elect to take an option in Broadcasting by adding the following courses to those specifically required in No. 2 (above):
 - Brd. 213—Announcing .. 2
 - Brd. 215—Radio Production 3
 - Brd. 216—Television Production 3
 - Brd. 217—Writing for Radio and Television 3
 - Brd. 331—Radio-Television Advertising
 or
 - Brd. 341—Radio-Television News 3

A minor in Speech requires 12 credits of approved Speech electives in two areas of the department.

Requirements for a B.A. Degree with a Major in Speech Communication

1. Complete the general requirements for the B.A. degree as listed on page 28.
2. Complete the following foundation courses and 3 or 4 below.

 Credits
 - Sp.C. 211—Voice and Diction 2
 or
 - Sp.P. 210—Speech Processes 3
 - Sp.C. 235—Discussion and Small Group Process 3
 - Sp.C. 311—Introductory Phonetics 3
 - Sp.C. 320—General Semantics 3
 - Sp.C. 325—Communication Theory 3
 - Sp.C. 351—Argumentation and Debate 3

3. Speech Communications majors electing to complete the major with maximum breadth must complete, with the specific approval of the major advisor, a minimum of 12 additional credits from the department’s courses and a minimum of 6 credits from the following courses:
 - Anth. 202—Cultural Anthropology 3
 - Anth. 429—Language in Culture 3
 - A.S. 402—Scientific Sampling 3
 - CIS 101—Introduction to Data Processing and Fortran 3
 - CIS 210—Systems Design and Analysis 3
 - CIS 220—Basic Programming Languages 3
 - Psy. 101—Introduction to Psychology 3
 - Psy. 153—Human Relations 3
 - Soc. 101—Introduction to Sociology 3

4. Speech Communications majors wishing to complete the major with a concentration in professionally oriented Speech Pathology must complete a minimum of 12 credits in Speech Pathology courses and a minimum of 6 credits in courses approved by the major advisor from the following:
 - Psy. 201—Advanced General Psychology 3
 - Psy. 245—Child Development 3
 - Psy. 246—Adolescence 3
 - Psy. 251—Introductory Statistics for Behavioral Sciences ... 3
 - Psy. 338—Abnormal Psychology 3

A minor in Speech Communications requires 18 credits selected from the foundation courses and including Sp.C. 111.

Requirements for B.A. Degree with a Major in Theatre

1. Complete the general requirements for the B.A. degree as listed on page 28.
2. Complete the following foundation courses:

 Credits
 - Thr. 211—Introduction to the Theatre 3
 - Thr. 221—Acting I ... 3
 - Thr. 241—Basic Stagecraft 3
 - Thr. 325—Theatre Speech 3
 - Thr. 331—Directing ... 3
 - Thr. 341—Intermediate Stagecraft 3
 - Thr. 351—Make-up for Theatre 3

3. Complete a minimum of 9 credits from the following courses:
 - Thr. 101-401—Theatre Practicum 3
 - Thr. 321—Acting II .. 3
 - Thr. 343—Scene Design 3
 - Thr. 347—Lighting Design 3
 - Thr. 355—History of Stage Costume 3
 - Thr. 435—Directing .. 3

*Only 3 credits of Theatre Practicum may count toward the major.

4. Complete a minimum of 6 credits from the following courses with the approval of the major advisor:
 - Art 161-162—Design and Color Theory 2 each
 - Art 261-262—History of World Art 3 each
 - Brd. 217—Television Production 3
 - E.S. 101-201—Graphics 2 each
 - Eng.l 342—20th Century Drama 3
 - Eng.l 383—Craft of Drama 3
 - Eng.l 423—Elizabethan and Jacobean Drama 3
 - Eng.l 434—Shakespeare 3
 - Mus. 123, 124—Introduction to Music 3 each
 - Sp.C. 361—Oral Interpretation 3

A minor in Theatre requires 18 credits selected from the foundation courses and including Thr. 211.
VETERINARY MEDICINE

Students planning to become veterinarians are required to complete at least two or three years of pre-veterinary study at the college level. Upon completion of these studies, a student applies for admission to the professional school of veterinary medicine of his choice. Pre-veterinary students usually enroll in the Department of Biological Sciences, where they follow a sequence of courses designed to meet specific needs. Pre-veterinary studies normally include English, general and organic chemistry, mathematics, physics, biological sciences, animal science, and some experience in the care and handling of animals.

WILDLIFE MANAGEMENT

College of Biological Sciences and Renewable Resources

Degrees: Bachelor of Science, Master of Science, Doctor of Philosophy (Interdisciplinary)

Minimum Requirements for Degrees:
B.S.—130 Credits; M.S.—30 Additional Credits; Ph.D.—No Fixed Credits.

The wildlife management curriculum in the undergraduate program in the Department of Wildlife and Fisheries is intended to provide basic education and training. Holders of the bachelor's degree will be qualified to enter the management, law enforcement, and public information-education phases of wildlife work. Students contemplating careers in research, administration, advanced management work, or teaching will find the bachelor's curriculum a solid foundation for graduate study.

The geographic location of the University is particularly advantageous for the study of wildlife management. Spruce forest, aspen-birch forest, alpine tundra, bogs, and several types of aquatic habitats are within easy reach. Studies can be made in many other habitats ranging from the dense forests of Southeastern Alaska to the Arctic Coast.

Degree Programs

Adequate study collections of plants and animals are available, and a 2,000-acre study area is near the campus. Undergraduates have ample opportunity for close association with the personnel of the Alaska Cooperative Wildlife Research Unit and the several local offices of the federal and state conservation agencies. These agencies usually hire a number of students for summer field work. Thus, an unusually good opportunity is available for students to gain experience and to make job connections.

Wildlife plays an extremely important part in the economy and recreation of Alaskans; because of this, some courses in the department will be of interest to non-major students.

Requirements and Curriculum for B.S. Degree with a Major in Wildlife Management

First Year

Fall Semester 15 Credits
Biol. 107-108—Fund. of Biology ... 4
Chem. 105—General Chemistry ... 4
Engl. 111—Methods of Written Comm 3
Math. 200—Calculus ... 4

Spring Semester 15 Credits
*Biol. 210—General Physiology ... 4
Chem. 106—General Chemistry ... 4
*Biol. 239—Plant Form & Function ... 4
L.R. 102-103—Conservation of Natural Resources 3

Second Year

Fall Semester 15 Credits
Biol. 271—Principles of Ecology ... 3
Geol. 101 or 111—Gen. or Physical Geol 4
General Economics elective ... 3
Math. 203—Intro. Finite Mathematics ... 4
W.F. 333—Literature of Ecology and Resource Management 1

Spring Semester 13+ Credits
Biol. 205—Vertebrate Anatomy ... 3
Biol. 222—Biology of Vertebrates ... 4
Sp.C. elective ... 3
Econ. 235—Resource Economics ... 3

Third Year

Fall Semester 17 Credits
Phys. 103—College Physics ... 4
W.F. 301—Principles of Animal Population Dynamics and Management ... 3
Biol. 331—Systematic Biology ... 4
**Foreign Language ... 3
Engl. 211 or 213—Advanced Exposition ... 3

Spring Semester 16 Credits
Phys. 104—College Physics ... 4
A.S. 301—Elementary Statistics ... 3
Degree Programs

L.R. 311—Soils ... 3
**Foreign Language .. 3
L.R. 354—Intro. Forest Systems 3

Fourth Year

Fall Semester 7+ Credits
W.F. 423—Linnology
or
OCN 411—General Oceanography 3
Biol. 425—Mammalogy .. 3
W.F. 483—Special Topics .. 1

Spring Semester 11+ Credits
Engl. 314—Research Writing .. 3
W.F. 402—Wildlife Biology and Mgmt 2
A.S. 402—Scientific Sampling 3
Biol. 426—Ornithology .. 3

*Note prerequisite.

**One year of foreign language taken at the university level. French, German, or Russian are recommended. Students having three or four years of language in high school with a grade of "C" or better, may, with advisor's approval, substitute an equivalent number of credits in the humanities area.

In addition:
1. Complete B.S. Social Science/
 Humanities requirement ... 9
2. Either Biol. 474 (Plant Ecology)
 or Biol. 476 (Animal Ecology) 3
3. Complete sufficient electives to bring the total to
 130.
4. A minimum of two months must be spent in the
 employ of an approved conservation agency before a
 student will be eligible for a bachelor's degree. A report
 on the work done and the experience gained during this
 time must be approved by the head of the department.

Requirements for M.S. Degree with a Major in Wildlife Management
1. A minimum of 30 credits of approved courses, including W.M. 697-698, Thesis, in the field of wildlife management.
2. Complete the general requirements for a graduate degree as listed on page 33.
3. Students working in subject areas involving significant non-English literature will be expected to read the appropriate foreign language.

Requirements for Ph.D. Degree in Wildlife Management
See page 34 for degree requirements.

Graduate Study in Wildlife Management
The Department of Wildlife and Fisheries and the Alaska Cooperative Wildlife Research Unit cooperate in offering graduate work leading to the Master of Science degree. An interdisciplinary Doctor of Philosophy degree can also be offered. Persons desiring detailed information on the graduate program in wildlife management may obtain this from the head, Department of Wildlife and Fisheries. The procedure to be followed in applying for admission to graduate study is outlined in the section on Admission to Graduate Study in this catalog.

The Alaska Cooperative Wildlife Research Unit offers a limited number of research assistantships; information on these and the unit's program can be obtained from the Leader, Alaska Cooperative Wildlife Research Unit, University of Alaska, Fairbanks, Alaska. Applications for these assistantships should be sent to the unit leader; such applications are supplementary to the application for admission for graduate study.
Course Descriptions

Courses offered by the University are listed alphabetically by department.

Course Numbers

The first numeral of a course numbered in the hundreds indicates the year in which the course is normally offered in its own department. For example, Engl. 111 is given for first-year students and Engl. 342 is given for third-year students. Freshman and sophomore students are cautioned to register for upper division (300 and 400) level courses only if they have had adequate preparation and background to undertake advanced study in the field in which the course is offered.

1-49 — Non-credit courses.

50-99 — Courses designed for associate degree or a technical certificate; they are not applicable to the baccalaureate requirements.

300-499 — Upper division courses. Freshman and sophomore students may be required to obtain special permission to take 300 and 400 level courses unless such courses are required in the first two years of their curriculum as printed in this catalog.

93, 94, 193, 194, 293, 294, 393, 394 — Special Topics courses in certain departments.

600-699 — Graduate courses to which a few well qualified undergraduates may be admitted with the permission of the head of the department in which the course is offered. 491-492 and 681-692 indicate seminars, 493-494 and 693-694 indicate special topics, and 695-698 indicate thesis or dissertation in those departments where listed.

Course Credits

One credit (or one hour) represents satisfactory completion of one hour of work a week for one semester. This requirement may be met by attendance at one lecture, or by three fifty-minute periods of laboratory work a week, or the equivalent.

Following the title of each course, the figures in parentheses indicate the number of lecture and laboratory hours the class meets. The first figure indicates lecture hours; the second, laboratory. For example (2+3) indicates that a class has two hours of lecture and three of laboratory work.

The number of credits listed is for each semester. Thus "Three Credits" means three credits may be earned.

Course Classifications

Subjects and courses are classified as below:

<table>
<thead>
<tr>
<th>Natural Sciences</th>
<th>Social Sciences</th>
<th>Humanities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology 402</td>
<td>Anthropology</td>
<td>Art</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>Business Administration</td>
<td>English</td>
</tr>
<tr>
<td>Chemistry</td>
<td>331, 332</td>
<td>Foreign Language</td>
</tr>
<tr>
<td>Geography 105, 209, 316, and 401</td>
<td>Economics</td>
<td>and Literature</td>
</tr>
<tr>
<td>Geology</td>
<td>Geography except 105, 209, 316, and 401</td>
<td>Home Economics 160, 260</td>
</tr>
<tr>
<td>Mathematics</td>
<td>History</td>
<td>Journalism</td>
</tr>
<tr>
<td>Physics</td>
<td>Home Economics 236, 245, 407, 425</td>
<td>Linguistics</td>
</tr>
<tr>
<td></td>
<td>Political Science</td>
<td>Music</td>
</tr>
<tr>
<td></td>
<td>Psychology</td>
<td>Philosophy</td>
</tr>
<tr>
<td></td>
<td>Sociology</td>
<td>Speech and Drama</td>
</tr>
</tbody>
</table>
ACCOUNTING

Acc. 101 3 Credits Fall/Spring
Elementary Accounting (3+0)
An introduction course in accounting concepts and procedures for service businesses and for merchandising businesses owned by a single proprietor. (Prerequisite: completion of all required remedial courses.)

Acc. 102 3 Credits Fall/Spring
Elementary Accounting (3+0)
A continuation of introductory accounting concepts and procedures emphasizing the problems of businesses organized as partnerships or corporations and performing manufacturing operations. (Prerequisite: Acc. 101.)

Acc. 210 3 Credits Spring
Income Tax (3+0)
A study of federal and state income taxes relating primarily to the individual citizen of Alaska with emphasis on the preparation of tax returns, tax planning, and the analysis of selected tax problems. (Prerequisite: Acc. 101.)

Acc. 221 3 Credits Fall
Fundamentals of Accounting (3+0)
A one-semester survey course in accounting designed for students majoring in areas other than accounting, business or office administration. The emphasis is on the nature of accounting and not on procedures.

Acc. 311 3 Credits Fall
Acc. 312 3 Credits Spring
Intermediate Accounting (3+0)
A treatment in depth of the balance sheet accounts and procedures for their analysis and correction. Study of working capital and fixed assets will receive special emphasis during Fall semester. Special attention will be given to long-term liabilities and stockholders’ equity during Spring semester. (Prerequisites: Acc. 102.)

Acc. 315 3 Credits Fall
Analysis of Financial Statements (3+0)
Interpretation of financial statements and analysis of accounting data for business planning, investment and evaluation purposes. Course not available for credit toward a B.B.A. degree with a major in accounting. (Prerequisite: Acc. 102.)

Acc. 342 3 Credits Spring
Managerial Cost Accounting (3+0)
A cost accounting course with a managerial emphasis focusing on breakeven analysis, job order costing, capital budgeting, profit planning, standard costing and variance analysis.

Acc. 401 3 Credits Fall
Acc. 402 3 Credits Spring
Advanced Accounting (3+0)
Fall Semester: A thorough study of the accounting for partnerships, installment sales and parent-subsidiary relationships. Spring semester: A thorough study of the accounting for fiduciaries, governments and a brief treatment of applied actuarial science. (Prerequisite: Acc. 312.)

Acc. 403 3 Credits Spring
Advanced Income Taxes (3+0)
A study of federal and state income taxes relating primarily to partnerships, trusts and corporations with emphasis on the preparation of tax returns, tax planning and selected tax problems. Also, social security taxes, sales taxes, gift, and estate taxes. (Prerequisite: Acc. 210.)

Acc. 404 3 Credits Fall
Adv. Managerial Cost Accounting
A cost accounting course with a managerial emphasis focusing on inventory valuation, joint costing, process costing, decentralization, cost behavior patterns, sales mix and other cost analysis.

Acc. 452 3 Credits Fall
Auditing (3+0)
A study of the procedures for verification of financial data and the professional standards applicable to the
auditors examination of financial statements and his expression of opinion relative to them. (Prerequisite: Acc. 312.)

Acc. 454 3 Credits Spring
Accounting Internship (3+0)
Work experience in an approved position with supervision and training in various phases of accounting. (Prerequisites: advanced standing as an accounting major and permission of the head of the department.)

Acc. 462 0 Credit Fall-Spring
C.P.A. Review
Preparation for the Uniform Certified Public Accountant Examination. (Prerequisites: advanced standing in accounting and permission of the head of the department.)

Acc. 493 Credits Arranged
Acc. 494 Credits Arranged
Special Studies in Accounting

AGRICULTURAL SCIENCE

Ag. 301 3 Credits Fall
Agricultural Prices (3+0)
Analysis and interpretation of factors affecting agricultural prices; study of price movements; price policy. (Prerequisites: Econ. 121, 122. Offered as demand warrants.)

Ag. 310 3 Credits Spring
Animal Science (2+3)
Origin, history, and economic significance of major breeds of dairy and beef cattle, swine, sheep, and poultry. Introduction to management, with special reference to Alaska. (Offered as demand warrants.)

Ag. 382 3 Credits Spring
Horticulture (2+3)
Survey; principles of propagation, culture and use; soil, light, and water requirements; planting and harvesting; insect, weed, and disease control. (Prerequisites: Biol. 107-108, 239. Offered as demand warrants.)

Ag. 404 3 Credits Spring
Agricultural Marketing (3+0)
Principles and practices of agricultural marketing; prices and costs; case studies. (Prerequisite: Econ. 121. Offered as demand warrants.)

Ag. 491 Credits Arr. Fall
Ag. 492 Credits Arr. Spring
Seminar
Unique problems in agricultural development of Alaska, the role of agriculture in Alaska's economy, and recent research advances in the state. Subject matter fields; economics, agronomy, animal industry, soils, horticulture, and agricultural engineering. (Offered as demand warrants.)

Ag. 493 Credits Arr. Fall
Ag. 494 Credits Arr. Spring
Special Topics
Various subjects studied principally through directed reading and supervised projects. (Offered as demand warrants.)

Ag. 496 Credits Arr. Fall
Ag. 497 Credits Arr. Spring
Research
Investigations of problems separate from, supplementary to, or of lesser scope than the thesis. (Admission by arrangement.)

Ag. 697 Credits Arr. Fall
Ag. 698 Credits Arr. Spring
Thesis
(Admission by arrangement.)

ALASKA NATIVE LANGUAGES

ANL 215 3 Credits Fall
ANL 216 3 Credits Spring
Alaska Native Languages (3+0)
A survey of all Native Languages of Alaska, open to all students. History, present, and future of these languages; examples of Indian and Eskimo language structures, with native speakers in class; present situation and prospects for the future as a cultural and political force in Alaska and elsewhere. Fall semester devoted mainly to Eskimo and Aleut; Spring to Athapaskan, Eyak, Tlingit, Haida, Tsimshian. Semesters may be taken independently.

ANL 387 3 Credits Fall
ANL 388 3 Credits Spring
Bilingual Methods and Materials (3+0)
Training and research in bilingual education methods in Alaska native languages and preparation of books and materials in any of them.

ANL 493 Credits Arr. Fall
ANL 494 Credits Arr. Spring
Special Topics
Directed study in Aleut, Athapaskan, Eyak, Tlingit, Haida, Tsimshian.

ANL 693 Credits Arr. Fall
ANL 694 Credits Arr. Spring
Special Topics
Directed advanced study in Aleut, Athapaskan, Eyak, Tlingit, Haida or Tsimshian.
Course Descriptions

ANTHROPOLOGY

Anth. 101 3 Credits Fall
The Study of Man (3+0)
Introduction to anthropology, including the physical and cultural aspects of man.

Anth. 202 3 Credits Spring
Cultural Anthropology (3+0)
Basic theories and current concepts of cultural anthropology regarding the social, political, and aesthetic life of primitive societies.

Anth. 203 3 Credits Fall
World Ethnography (3+0)
A descriptive study of peoples of the world: Europe, Asia, and Africa.

Anth. 204 3 Credits Spring
World Ethnography (3+0)
A descriptive study of peoples of the world: the New World and the Pacific.

Anth. 205 3 Credits Fall
Physical Anthropology (3+0)
An introductory course including the behavior, genetics, classification, and evolution of man and the other primates, as well as the distribution, morphological and physiological adaptations of modern human populations. (Prerequisite: Biol. 107-108.)

Anth. 214 3 Credits Fall
Archaeology (2+3)
The history of archaeology and a study of its methods. (Prerequisite: Anth. 101.)

Anth. 303 3 Credits Spring
Culture History (3+0)
The inventions of man and the spread of culture in the Old and New World. (Prerequisites: Anth. 101 or 203 or 204, or permission of the instructor.)

Anth. 304 3 Credits Fall-Spring
Africa (3+0)
Peoples and cultures of Africa. (Prerequisite: Anth. 101.)

Anth. 306 3 Credits Spring
Oceania (3+0)
Ethnic groups and cultures of Indonesia, Micronesia, Melanesia, Polynesia, and Australia. (Prerequisite: Anth. 101.)

Anth. 312 3 Credits Fall-Spring
North American Archaeology (3+0)
Prehistoric cultures north of Mexico. Archaeological methods peculiar to America and problems related to the prehistory of the Arctic Regions. (Prerequisite: Anth. 214.)

Anth. 326 3 Credits Spring
Arctic Ethnology (3+0)
Ethnic groups and cultures of the circumpolar area. (Prerequisites: Anth. 101 or 203 or 204.)

Anth. 328 3 Credits Spring
Arctic Archaeology (2+3)
Problems of the prehistory of the Arctic. (Prerequisite: Anth. 214.)

Anth. 329 3 Credits Fall
Peoples of the U.S.S.R. (3+0)
Native peoples of Siberia and adjoining regions. (Prerequisite: Anth. 101.)

Anth. 330 3 Credits Spring
Archaeology of Northern Asia (3+0)
A study of prehistoric cultures of Northern Asia including Siberia, Central Asia, North China, Korea and Japan from the earliest evidence of human occupation up to the Historic Period. Prerequisites: Anth. 214 or permission of the instructor.)

Anth. 334 3 Credits Spring
Survey of North American Physical Anthropology (2+2)
Native North Americans: early migrations, demography, diets, microevolution, health, disease, and cultural practices—all as revealed by studies of the prehistoric and protohistoric skeletal remains, and by the genetics and morphology of living tribes. The value of integrating biological, ethnographical, and archaeological data is emphasized. (Prerequisite: Anth. 205. Recommended: Anth. 204 or 335. Offered alternate years.)

Anth. 335 3 Credits Fall
North American Ethnology (3+0)
Tribal life of American Indians north of Mexico. (Prerequisites: Anth. 101 or 203 or 204.)

Anth. 336 3 Credits Spring
Ethnology of Central and South America (3+0)
Racial distribution, material, and social cultures of peoples of Central and South America. (Prerequisite: Anth. 101.)

Anth. 338 3 Credits Spring
Culture Patterns of Japan (3+0)
A study of the social and cultural institutions of Japan and their development from archaeological beginnings to modern times. Emphasis on social change and
cultural continuity. (Prerequisite: Anth. 101 or 202 or permission of the instructor.)

Anth. 342 3 Credits Spring
Anthropology of the Natives of Alaska (3+0)
Indians and Eskimos of Alaska. Social organization, social customs, and problems of acculturation. Primarily for students who expect to teach in Alaska. (Prerequisites: Anth. 101, Hist. 341 or junior standing.)

Anth. 401 4 Credits Fall
Primate and Human Evolution (3+3)
The fossils — their morphology, inferred functional and ecological relationships, geochronologic and geochronometric placements. Current taxonomic and phylogenetic assessments, theories of evolutionary processes, and the role of culture in hominid evolution are also major concerns. Contributions of biochemistry and chromosomal studies to an understanding of primate evolution are also considered. (Prerequisite: Anth. 205 or Biol. 208 or permission of the instructor.)

Anth. 404 4 Credits Spring
Primate and Human Variations (3+3)
Primateology, including systematics, behavior, ecology, and inter- and intrapopulation genetic and morphological variations. Human adaptations to heat, cold, high altitude and changing nutritional and disease patterns. (Prerequisites: Anth. 205, Biol. 252, or permission of the instructor. Offered alternate years.)

Anth. 406 4 Credits Spring
Primate Anatomy (2+6)
Each student gains a first hand knowledge of the interrelations and functional significance of the structures of the primate body. The major work of the course consists of dissection of a specified primate and a study of the dentition and osteology. The total anatomical picture is related to the evolution and present ecology of primates. (Prerequisite: Anth. 205, Biol. 107-108, 201 or 317 and permission of the instructor. Offered alternate years or as demand warrants.)

Anth. 423 3 Credits Fall
Social Structure (3+0)
The social systems of native peoples. (Prerequisites: Anth. 101 or 203 or 204 and junior standing.)

Anth. 424 3 Credits Spring
Primitive Religion (3+0)
Descriptive and comparative study of religious belief in native societies.

Course Descriptions

Anth. 425 3 Credits Spring
Primitive Arts (3+0)
The visual, literary, and musical arts of native people. (Prerequisites: Anth. 101 and junior standing.)

Anth. 427 3 Credits Fall
Contemporary Problems (3+0)
Analysis of the contemporary problems of the native populations, emphasizing the peoples of Alaska. (Prerequisite: permission of the instructor.)

Anth. 428 3 Credits Spring
Psychological Anthropology (3+0)
The relationship between culture and personal behavior patterns. (Prerequisites: Anth. 202, Psy. 101 and junior standing.)

Anth. 429 3 Credits Fall
Language in Culture (3+0)
The study of language in its relation to culture. (Prerequisites: Anth. 202 and junior standing.)

Anth. 430 3 Credits Spring
Anthropological Field Methods (3+0)
Lectures to prepare the student for field work and inform him of recently developed techniques of collecting field data. (Prerequisites: junior standing and permission of the instructor. Offered as demand warrants.)

Anth. 491 Credits Arr. As demand warrants
Anth. 492 Credits Arr. As demand warrants

Seminar
Topics in anthropology.

Anth. 493 Credits Arr. Fall
Anth. 494 Credits Arr. Spring

Special Topics
Various subjects studied in special fields on anthropology. (Prerequisite: senior standing or permission of the instructor.)

Anth. 495 Credits Arr. Fall
Anth. 496 Credits Arr. Spring

Research
Supervised research in the fields of anthropology represented in the department program. (Prerequisite: permission of the instructor.)

Anth. 497 Credits Arr. Fall
Anth. 498 Credits Arr. Spring

Thesis or Project
Advanced students who have shown special aptitude for individual study or research may elect thesis or project work. (Prerequisite: permission of the head of the department.)
Course Descriptions

Anth. 601 3 Credits Fall
History of Anthropology (3+0)
A chronological study of the development of the science of anthropology, stressing the leaders in the field and the theories developed.

Anth. 610 3 Credits Fall
Human Ecology (3+0)
The adaptation of man to his environment, both natural and social. The course concerns itself with the total aspect of a society in its internal group relationship, as well as in the natural environment on which its economy is based.

Anth. 620 3 Credits Spring
Physical Anthropology of North America (2+2)
Review of pertinent background material. Individual intensive research on a group, tracing biological history, relationships with other living populations, prehistoric migrations, demography, reaction to foreign diseases, micro-evolutionary derivations, and other features. (Prerequisite: Anth. 204 and 205 or 335.)

Anth. 630 Credits Arr. Spring
Anthropological Field Methods
An opportunity for the graduate student to learn the techniques of field work and practice them.

Anth. 691 Credits Arr. Fall
Anth. 692 Credits Arr. Spring
Seminar
Topics include physical and social anthropology, comparative archaeology, ethnological theory. (Admission by arrangement.)

Anth. 693 Credits Arr. Fall
Anth. 694 Credits Arr. Spring
Special Topics
Various subjects studied, principally by directed study, discussion, and research. (Admission by arrangement.)

Anth. 695 Credits Arr. As demand warrants
Anth. 696 Credits Arr. As demand warrants
Research
Supervised research. Credit to be arranged. (Prerequisites: graduate standing and permission of the instructor. Can be repeated.)

Anth. 697 Credits Arr. Fall
Anth. 698 Credits Arr. Spring
Thesis
Offered as demand warrants.

APPLIED STATISTICS

A.S. 301 3 Credits Fall-Spring
Elementary Probability and Statistics (2+3)
Descriptive statistics, frequency distributions, mean, median, mode, standard deviation, elementary probability, inferential statistics, estimation of population parameters, tests of hypothesis, including non parametric methods, correlation, linear regression, and analysis of variance. (Prerequisite: Math 106 or Math 121 and junior standing or consent of instructor.)

A.S. 401 3 Credits Fall
Analysis of Linearized Models (2+3)
Analysis by methods of least squares of general linearized models, including those appropriate to various designs, including completely random, randomized complete block, incomplete block and latin square, and those for the analysis of variance and analysis of covariance. Matrix algebra appropriate to least squares. (Prerequisite: A.S. 301.)

A.S. 402 3 Credits Spring
Scientific Sampling (2+3)
Sampling methods, including simple random, stratified and systematic; estimation procedures, including ratio and regression method; special area and point sampling procedures; optimum allocation. (Prerequisite: A.S. 301.)

A.S. 493 Credits Arranged Fall
A.S. 494 Credits Arranged Spring
Special Topics
Various topics studied. Admission by arrangement.

A.S. 602 3 Credits Spring
Experimental Design (3+0)
Constructing and analyzing designs for experimental investigations; completely randomized, randomized block and Latin - square designs, split-plot design, incomplete block design, simple and partially compounded factorial designs, lattice and cubic lattice designs, treatment of missing data, comparison of designs. (Prerequisites: A.S. 401 or consent of instructor. Offered as demand warrants.)

A.S. 693 Credits Arranged Fall
A.S. 694 Credits Arranged Spring
Special Topics
Various topics studied. Admission by arrangement.

ART

Art 101 3 Credits Fall
Beginning Ceramics (2+4)
An introduction to ceramics as a medium for
expression. Foundation experiences in clay, glazes, and plaster with lesser emphasis on enamels, concrete, and glass. Terminal course for non-ceramic majors, as well as a base for subsequent courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 105</td>
<td>2</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 106</td>
<td>2</td>
<td>Spring</td>
</tr>
<tr>
<td>Art 107</td>
<td>2</td>
<td>As demand warrants</td>
</tr>
<tr>
<td>Art 108</td>
<td>2</td>
<td>As demand warrants</td>
</tr>
</tbody>
</table>

Basic investigation of the materials of watercolor and their use in expressing the student's ideas and problems in the techniques of watercolor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 161</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 162</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Design and Color Theory (2+2)
Creative designing and rendering. Emphasis on mass-space relationships and composition, value transitions and hues, colorwheel, color, and intensity movements.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 201</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 202</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Intermediate Ceramics (2+4)
A continuation of Basic Ceramics with an emphasis on the potter's wheel and glaze calculations; plaster, as it relates to pottery; an introduction to enameling as a medium for expression; cold glass techniques; basic concrete experiences. (Prerequisite: Art 101-102 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 203</td>
<td>1</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 204</td>
<td>1</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Gallery Techniques (1+0)
Planning and installing art shows.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 205</td>
<td>2</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 206</td>
<td>2</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Life Drawing and Composition
Problems in drawing from life, exploring possibilities in pictorial design, and composition, still life and anatomy. (Prerequisite: Art 106 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 207</td>
<td>2</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 208</td>
<td>2</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Beginning Printmaking (0+4)
Various intaglio and relief printing media, engraving, etching, woodcut, and other graphic media. (Prerequisite: Art 106 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 209</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 210</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Beginning Metalcraft (0+6)
Material processes and techniques for silver jewelry and silversmithing. (Prerequisite: Art 161 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 211</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 212</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Beginning Sculpture (0+6)
Basic casting techniques, creative studies in clay, wood, stone and metal sculpture. Emphasis on mastery of techniques and material processes.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 213</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 214</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Beginning Oil Painting (0+6)
Basic investigation of materials and their use in expressing the students' ideas. (Prerequisites: Art 106, 162 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 215</td>
<td>2</td>
<td>As demand warrants</td>
</tr>
</tbody>
</table>

Weaving (0+6) (Same as H.E. 215)
The study of various weaving techniques, including the traditional loom weaving, different kinds of primitive weaving, (backstrap loom, Inko loom, Hungarian loom, etc.); tapestry weaving, macrame and spinning and dyeing yarns. The emphasis will be on individual creativity and experimentation within these techniques.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 261</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 262</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

History of World Art (3+0)
Origins of art and its progressive development from the paleolithic era to the present; emphasis on change and development. (Prerequisite: sophomore standing. Term paper required each semester.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 301</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 302</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Advanced Ceramics (2+4)
Advanced wheel work; design of large scale ceramic murals for incorporation into architecture. Study of the practical application of ceramics in the commercial field. Advanced body and glaze calculation. (Prerequisite: Art 201-202 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 305</td>
<td>2</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 306</td>
<td>2</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Advanced Drawing and Anatomy (0+4)
Creative approach; including a comprehensive study of functional human anatomy, with the human figure as an art motif. (Prerequisite: Art 206 or permission of the instructor.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 309</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Art 310</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>
Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art 307</td>
<td>2</td>
<td>Fall</td>
<td>3 Credits Intermediate Printmaking (0+4) Additional study and experimentation in intaglio, relief, and planographic printing techniques, including lithography, serigraphy, and color printing. (Prerequisite: Art 208 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 308</td>
<td>2</td>
<td>Spring</td>
<td>2 Credits Intermediate Printmaking (0+4) Additional study and experimentation in intaglio, relief, and planographic printing techniques, including lithography, serigraphy, and color printing. (Prerequisite: Art 208 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 309</td>
<td>3</td>
<td>Fall</td>
<td>3 Credits Intermediate Metalcraft (0+6) Material processes and techniques for silver jewelry and silversmithing; creating problems in artistic design. (Prerequisite: Art 210 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 310</td>
<td>3</td>
<td>Spring</td>
<td>3 Credits Intermediate Metalcraft (0+6) Material processes and techniques for silver jewelry and silversmithing; creating problems in artistic design. (Prerequisite: Art 210 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 311</td>
<td>3</td>
<td>Fall</td>
<td>3 Credits Intermediate Sculpture (0+6) Creative studies in welding, plaster casting, concrete casting, sand-casting, clay modeling, wood carving, and stone carving. (Prerequisite: Art 212 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 312</td>
<td>3</td>
<td>Spring</td>
<td>3 Credits Intermediate Sculpture (0+6) Creative studies in welding, plaster casting, concrete casting, sand-casting, clay modeling, wood carving, and stone carving. (Prerequisite: Art 212 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 313</td>
<td>2</td>
<td>Fall</td>
<td>2 Credits Intermediate Oil Painting (0+4) Creating pictorial problems in oil painting techniques, still life, composition, and figure painting. (Prerequisite: Art 214 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 314</td>
<td>2</td>
<td>Spring</td>
<td>2 Credits Intermediate Oil Painting (0+4) Creating pictorial problems in oil painting techniques, still life, composition, and figure painting. (Prerequisite: Art 214 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 407</td>
<td>2</td>
<td>Fall</td>
<td>2 Credits Advanced Printmaking (0+4) Advanced study in all printing media. (Prerequisite: Art 308 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 408</td>
<td>2</td>
<td>Spring</td>
<td>2 Credits Advanced Printmaking (0+4) Advanced study in all printing media. (Prerequisite: Art 308 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 409</td>
<td>3</td>
<td>Fall</td>
<td>3 Credits Advanced Metalcraft (0+6) Continued investigation and experimentation of intermediate metalcraft. (Prerequisite: Art 310 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 410</td>
<td>3</td>
<td>Spring</td>
<td>3 Credits Advanced Metalcraft (0+6) Continued investigation and experimentation of intermediate metalcraft. (Prerequisite: Art 310 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 411</td>
<td>3</td>
<td>Fall</td>
<td>3 Credits Advanced Sculpture (0+6) Styrofoam burn-out, aluminum, bronze casting, steel welding, repousse sculpture, plastics, inlay, and architectural sculpture. (Prerequisite: Art 312 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 412</td>
<td>3</td>
<td>Spring</td>
<td>3 Credits Advanced Sculpture (0+6) Styrofoam burn-out, aluminum, bronze casting, steel welding, repousse sculpture, plastics, inlay, and architectural sculpture. (Prerequisite: Art 312 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 413</td>
<td>2</td>
<td>Fall</td>
<td>2 Credits Advanced Oil Painting (0+4) Exploration and development of the creative approach to various techniques involved in figure, landscape, abstract and non-objective painting, and pictorial design. (Prerequisite: Art 314 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 414</td>
<td>2</td>
<td>Spring</td>
<td>2 Credits Advanced Oil Painting (0+4) Exploration and development of the creative approach to various techniques involved in figure, landscape, abstract and non-objective painting, and pictorial design. (Prerequisite: Art 314 or permission of the instructor.)</td>
</tr>
<tr>
<td>Art 419</td>
<td>3</td>
<td>Fall</td>
<td>3 Credits History of Northern Renaissance Art (3+0) Pre-Renaissance painting; sculpture, architecture, and minor arts of the Netherlands through the Netherlands Renaissance; Renaissance painting in France and Germany; the humanist and reformation influences on artistic developments.</td>
</tr>
<tr>
<td>Art 420</td>
<td>3</td>
<td>Spring</td>
<td>3 Credits History of Northern Renaissance Art (3+0) Pre-Renaissance painting; sculpture, architecture, and minor arts of the Netherlands through the Netherlands Renaissance; Renaissance painting in France and Germany; the humanist and reformation influences on artistic developments.</td>
</tr>
<tr>
<td>Art 493</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Credits Arr. Special Topics Various subjects in art. (Admission by arrangement.)</td>
</tr>
<tr>
<td>Art 494</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Credits Arr. Special Topics Various subjects in art. (Admission by arrangement.)</td>
</tr>
<tr>
<td>Art 497</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Credits Arr. Thesis</td>
</tr>
<tr>
<td>Art 498</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Credits Arr. Thesis</td>
</tr>
</tbody>
</table>

BEHAVIORAL SCIENCES

B.S. 101 3 Credits As demand warrants Field Observation (2+3) Observation experience within a series of three agencies in which an awareness of intake procedures, services provided, and follow-up will be discussed.

B.S. 201 3 Credits As demand warrants Field Practice (2+3) Practical experience within an agency, under the guidance of field supervisors, collecting and interpreting client information. Ways of relating to clients in a therapeutic manner will be developed in the training experience.

B.S. 202 3 Credits Culture and Learning (3+0) Cultural child rearing practices and their effects on learning. Includes acculturation processes and learning factors in early childhood among Alaskan ethnic groups.
B.S. 251 3 Credits As demand warrants
Research Principles (2+3)
Basic principles of scientific methods, its application to
behavioral and social science statistics. The implication
of systematic assessment, experimentation and survey
methods for empirical conclusions concerning social
and behavioral functions and causes.

BIOLOGY

Biol. 104 3 Credits Fall
Natural History of Alaska (3+0)
Animals, plants, and the major ecosystems of Alaska.
(Prerequisite: Permission of instructor.)

Biol. 107 3 Credits Fall-Spring
Fundamentals of Biology (3+0)
Basic principles of living systems: chemical and
structural bases; major metabolic mechanisms;
reproduction and development; genetics; evolution
and diversity; environmental relationships; and
mechanisms for stability of cells, organisms, and
populations. An introductory course open to students in
all curricula.

Biol. 108 1 Credit Fall-Spring
Fundamentals of Biology (0+3)
Laboratory part of Biology 107. Exercises are designed
to illustrate principles and concepts developed in
Biology 107. (Prerequisites: concurrent registration, or
credit in Biol. 107.)

Biol. 201 3 Credits Spring
Mammalian and Human Anatomy
Mammalian gross and microanatomy, with emphasis
on human structure. Dissection of cat and comparison
with human. (Prerequisite: Biol. 107-108.)

Biol. 205 3 Credits Spring
Vertebrate Anatomy (1+6)
Anatomy of bony fishes, birds, and mammals.
Laboratory dissections emphasized. (Prerequisites:
Biol. 107-108 with a grade of B or better, or Biol. 107-108
and sophomore standing.)

Biol. 206 2 Credits Spring
Introduction to Bird Study (1+3)
Natural history and identification of birds. Early
morning field trips. No credit allowed if credit received
for Biol. 428. (Prerequisites: Biol. 107-108 with a grade
of B or better, or Biol. 107-108 and sophomore standing,
or permission of the instructor. Offered alternate years;
next offered 1974.)

Biol. 208 3 Credits Spring
Organic Evolution (3+0)
Evidences, mechanisms, and directive forces.
(Prerequisite: Biol. 107-108 with a grade of B or better,
or sophomore standing. Offered alternate years; next
offered 1974.)

Biol. 210 4 Credits Fall-Spring
General Physiology (3+3)
Organism function, including such topics as respiration,
digestion, circulation, nerve and muscle function,
hormones, and reproduction. (Prerequisites: Biol. 107-
108 with a grade of B or better, or Biol. 107-108 and
sophomore standing; Chem. 105 or Chem. 103 and 104.)

Biol. 222 4 Credits Spring
Biology of the Vertebrates (3+3)
An introduction to the different groups of vertebrates
with emphasis on identification, biogeography,
systematics, and basic life history features.
(Prerequisites: Biol. 107-108 with a grade of B or better,
or Biol. 107-108 and sophomore standing.)

Biol. 239 4 Credits Spring
Plant Form and Function (3+3)
Structure, function, ecology and evolutionary patterns
of the major groups of plants. (Prerequisites: Biol. 107-
108 with a grade of B or better, or Biol. 107-108 and
sophomore standing.)

Biol. 242 3 Credits Spring
Introductory Microbiology (2+3)
Survey of the morphology and physiology of
microorganisms, their role in ecology and their
relationship to man. This course is not recommended
for upper division Biology majors and should not be
used to meet the microbiology requirement of pre-
health profession students or medical tech programs.
(Prerequisite: Biol. 107-108.)

Biol. 252 3 Credits Spring
Principles of Genetics (3+0)
Principles of inheritance; physico-chemical properties
of genetic systems. Laboratory optional. (Prerequisites:
Biol. 107-108 with a grade of B or better, or Biol. 107-108
and sophomore standing.)

Biol. 253 1 Credit Spring
Principles of Genetics Lab (0+3)
Laboratory part of Biology 252. Exercises designed to
illustrate principles and concepts discussed in Biology
252. (Co-requisites: concurrent registration or credit in
Biol. 252.)

Biol. 271 3 Credits Fall-Spring
Principles of Ecology (3+0)
Relationships between organisms and their
environments. Communities, environmental factors
affecting plants and animals, population structure, and
reaction of organisms. Field trips. (Prerequisites: Biol.
107-108 with a grade of B or better, or Biol. 107-108 and
sophomore standing.)
Course Descriptions

Biol. 305 4 Credits Fall
Invertebrate Zoology (3+3)
Structure, function, classification, evolution and life histories of invertebrate animals. (Prerequisites: Junior standing and at least eight credits in Biology, including Biol. 107 and 108, or permission of the instructor.)

Biol. 306 3 Credits Fall
Entomology (2+3)
Natural history and identification of insects and arachnids. Preregistration required to insure preparation of individual insect collection. (Prerequisite: Biol. 107-108. Offered as demand warrants.)

Biol. 307 3 Credits Fall
Parasitology (2+3)
Classification, morphology, life history, and ecology of parasites of animals. (Prerequisites: Biol. 107-108 and permission of instructor.)

Biol. 317 4 Credits Fall
Comparative Anatomy of Vertebrates (2+6)
Anatomy, phylogeny, and evolution of the vertebrates. (Prerequisites: Biol. 107-108 with a grade of B or better, or Biol. 107-108 and sophomore standing.)

Biol. 318 4 Credits Spring
Vertebrate Developmental Anatomy (2+6)
Morphogenesis of the vertebrates and introduction to the causal analysis of development. (Prerequisite: Biol. 317.)

Biol. 328 3 Credits Spring
Biology of Marine Animals (3+0)
Introduction to biology of marine organisms. Ocean as a habitat. Distribution, classification, functional morphology, and general biology of the major biological groups; marine environments; ecological relationships; man and the oceans. (Prerequisite: Upper division standing in a biologically oriented major. Offered alternate years; next offered 1974.)

Biol. 331 4 Credits Fall
Systematic Botany (2+6)
Identification and classification of vascular plants with emphasis on Alaskan flora; discussion of taxonomic principles and both classical and experimental methods of taxonomic research. Preregistration is required to insure that each student will prepare a plant collection. (Prerequisite: Biol. 239, or permission of the instructor. Biol. 252 recommended.)

Biol. 333 3 Credits Fall
Morphology of the Non-Vascular Plants (2+3)
Comparative study of structure, development, phylogenetic trends, and life histories of the major groups of algae, fungi, and bryophytes. (Prerequisite: Biol. 239. Offered alternate years; next offered 1974.)

Biol. 334 4 Credits Fall
Morphology and Anatomy of Vascular Plants (3+3)
Comparative study of morphology, developmental anatomy, phylogenetic trends, and life histories of the major groups of vascular plants. (Prerequisite: Biol. 239. Offered alternate years; next offered 1973.)

Biol. 343 5 Credits Fall
General Bacteriology (3+6)
Morphology, physiology, and systematics of bacteria and viruses and their relationship to man. Introduction to important concepts of immunology and epidemiology. (Prerequisites: credit or concurrent registration in Chem. 321, or permission of the instructor.)

Biol. 352 3 Credits Spring
Cytogenetics (2+3)
Cell structure emphasizing the role of chromosomes in the differentiation and development of plants and animals. (Prerequisites: Biol. 252 or permission of the instructor. Offered as demand warrants.)

Biol. 354 3 Credits Spring
Genetics of Microorganisms (2+3)
Modern concepts of microbial genetics, including basic genetic theory, growth and macromolecular synthesis, the genetic code, mutation and selection, genetic exchange mechanisms, accessory genetic elements (extrachromosomal) and control mechanisms. (Prerequisites: Biol. 252, Biol. 242 or permission of the instructor. Offered as demand warrants.)

Biol. 361 4 Credits Fall
Cell Biology (3+3)
Detailed structure, including ultrastructure, and function of the cell; isolation, composition, and biochemical properties of cell organelles and their integration. (Prerequisites: A year each of college chemistry and biology.)

Biol. 401 30 Credits Fall
Medical Technology
Twelve-month medical technology internship at an affiliated hospital school, including work in clinical chemistry, hematology, microbiology, serology, parasitology, and histologic technique. (Prerequisites: senior standing in medical technology curriculum with the prior two semesters having been in residence at the University of Alaska; acceptance by an affiliated school of medical technology.)
Course Descriptions

Biol. 414 4 Credits Spring
Comparative Physiology (3+3)
Functional variations and interrelationships among the
major animal phyla; includes ionic and osmotic
regulation, temperature regulation, metabolism,
excretion, respiration, cardiovascular systems, nerve
and muscle function. (Prerequisites: Biol. 210, Chem.
106; Chem. 223 or 321 and Biol. 361 recommended.)

Biol. 416 3 Credits Spring
Plant Physiology (2+3)
Functions of the vascular plants; plant - soil - water
relations; synthesis and metabolism of organic
compounds; growth and development. (Prerequisites:
Biol. 210, Chem. 106, Chem. 223 or 321 and Biol. 361
recommended. Offered alternate years; next offered
1974.)

Biol. 423 4 Credits Fall
Ichthyology and Herpetology (3+3)
Major groups of fishes, amphibians and reptiles, with
emphasis on forms found in northwestern North
America. Classification, evolution, structure and
importance to man of the major groups. (Prerequisites:
Biol. 222 and 205 or Biol. 317; or permission of
instructor.)

Biol. 425 3 Credits Fall
Mammalogy (2+3)
Variety of mammals, their behavior, life histories,
identification, phylogeny and systematics,
morphology, distribution and zoogeography.
(Prerequisites: 20 credits in Biology, including Biol. 222
and Biol. 205 or 317, or permission of instructor.)

Biol. 426 3 Credits Spring
Ornithology (2+3)
Structure and adaptation, ecology, behavior, life
histories, distribution, and classification of birds. Early
morning field trips. (Prerequisites: 20 credits in
Biology, including Biol. 222 and Biol. 205 or Biol. 317 or
permission of instructor.)

Biol. 441 3 Credits Spring
Principles of Animal Behavior (2+3)
Basic principles (causal factors and functional
consequences) in the behavior of individual organisms
and social groups, and in the development of behavior
patterns. (Prerequisites: Biol. 210, 222 and 305.)

Biol. 443 3 Credits Fall
Microbial Ecology (1+6)
Laboratory investigation of ecological activity and
impact of bacteria and fungi. Isolation and study of
important genera. (Prerequisites: Biol. 343; or Biol. 242
and Biol. 271; or consent of instructor. Offered alternate
years; next offered 1974.)

Biol. 462 4 Credits Spring
Developmental Biology (3+3)
Principles of developmental biology and
differentiation; emphasis on systems employed for
experimental studies. (Prerequisites: Biol. 361 or Chem.
451 or consent of instructor; Biol. 318 recommended.
Offered alternate years; next offered 1974.)

Biol. 474 3 Credits Spring
Plant Ecology (2+3)
Occurrence, abundance and productivity of plant
species under field conditions; structure, composition
and variations in time and space of plant communities;
relative environmental aspects; methods of analysis.
(Prerequisites: Biol. 239 and 271 or permission of
instructor.)

Biol. 476 4 Credits Spring
Animal Ecology (4+0)
Principles and concepts of ecology as applied to animal
populations, including distribution and abundance,
growth and regulation of populations, their role in the
functioning of natural ecosystems, ecological energy
relationships, and the organization of natural
communities. (Prerequisites: Biol. 271 and Biol. 222 or
305, or permission of Instructor.)

Biol. 478 1 Credit Spring
Field Ecology (0+3)
An intensive experience in the collection and
interpretation of ecological data. The course consists of
a field trip during spring break. Students will engage in
the design, execution, and analysis of field projects
dealing with various aspects of ecology. (Prerequisites:
Biol. 271 and Biol. 474 or Biol. 476 [may be taken
concurrently], and permission of instructor. Students
will be expected to share in expenses.)

Biol. 491 Credits Arr. Fall
Biol. 492 Credits Arr. Spring
Seminar
Topics in biological sciences.

Biol. 493 Credits Arr. Fall
Biol. 494 Credits Arr. Spring
Special Topics
Special fields in biological sciences. (Prerequisite:
senior standing or permission of the instructor. Offered
as demand warrants.)
Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biol. 495</td>
<td>Arr.</td>
<td>Fall</td>
<td>Guided investigation, either laboratory or field, for qualified seniors. (Admission by arrangement.)</td>
</tr>
<tr>
<td>Biol. 496</td>
<td>Arr.</td>
<td>Spring</td>
<td>Research</td>
</tr>
<tr>
<td>Biol. 615</td>
<td>1 Credit</td>
<td>Fall</td>
<td>History of Biology (1+0) The progress of biological thought and philosophy from ancient to modern times. (Offered as demand warrants.)</td>
</tr>
<tr>
<td>Biol. 618</td>
<td>3 Credits</td>
<td>Spring</td>
<td>Principles and Methods of Taxonomy (2+3) Modern taxonomic ideas and their application to zoological and botanical problems. (Offered alternate years; next offered 1975.)</td>
</tr>
<tr>
<td>Biol. 618</td>
<td>2 Credits</td>
<td>Spring</td>
<td>Biogeography (2+0) Spatial and temporal geography of plant and animal groups; emphasis on environmental and historical features controlling present patterns of distribution. (Offered alternate years; next offered 1974.)</td>
</tr>
<tr>
<td>Biol. 617</td>
<td>3 Credits</td>
<td>Spring</td>
<td>Physiological Ecology (2+3) A study of those physiological processes primarily involved in the interaction of animals with their environment. Special emphasis will be placed on northern habitats. (Prerequisites: a physiology course and Biol. 271.)</td>
</tr>
<tr>
<td>Biol. 619</td>
<td>3 Credits</td>
<td>Fall</td>
<td>Advanced Animal Behavior (3+0) Adaptive nature of behavior in relation to the physical, biological, and social environment. Current problems and controversies in the study of behavior. (Prerequisites: Biol. 441 and permission of the instructor. Offered alternate years; next offered 1973.)</td>
</tr>
<tr>
<td>Biol. 637</td>
<td>2 Credits</td>
<td>Fall</td>
<td>Modern Evolutionary Theory (2+0) Contemporary ideas and problems of the mechanics of evolution.</td>
</tr>
<tr>
<td>Biol. 641</td>
<td>3 Credits</td>
<td>Fall</td>
<td>Microbial Physiology (2+3) The principal types of autotrophic and heterotrophic microbial metabolism. Photosynthesis, nitrogen fixation, metabolism of iron and sulfur bacteria. Fermentation, respiration, biosynthetic pathways. (Prerequisites: Biol. 343; Chem. 452 or permission of the instructor. Offered as demand warrants.)</td>
</tr>
<tr>
<td>Biol. 650</td>
<td>3 Credits</td>
<td>Spring</td>
<td>Physiological Genetics (2+3) Development and metabolism in relation to and under the control of genotypes. (Prerequisites: Biol. 252, Biol. 381 and Chem. 321 or permission of instructor; Chem. 451 recommended. Offered as demand warrants.)</td>
</tr>
<tr>
<td>Biol. 662</td>
<td>3 Credits</td>
<td>Spring</td>
<td>Marine Ecology (3+0) The sea as a biological environment; organisms in the ocean; factors influencing the growth of organisms; nutrient cycles; productivity; food web and interdependence of organisms; several field trips may be required. (Prerequisites: Biol. 271, Chem. 212, 322, Geol. 411 or permission of the instructor. Offered alternate years; next offered 1975.)</td>
</tr>
<tr>
<td>Biol. 674</td>
<td>3 Credits</td>
<td>Fall</td>
<td>Advanced Plant Ecology (2+3) Current concepts, controversies, and advances in plant ecology; emphasis on community-level ecology, methods of classification and ordination, and recent literature. (Prerequisite: Biol. 474.)</td>
</tr>
<tr>
<td>Biol. 691</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Seminar</td>
</tr>
<tr>
<td>Biol. 692</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Topics in biological sciences. (Offered as demand warrants.)</td>
</tr>
<tr>
<td>Biol. 693</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Special Topics</td>
</tr>
<tr>
<td>Biol. 694</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Various subjects, including advanced studies in ecology, evolution, taxonomy, mycology, biogeography, physiology, animal behavior, etc. (Admission by arrangement.)</td>
</tr>
<tr>
<td>Biol. 695</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Research</td>
</tr>
<tr>
<td>Biol. 696</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Investigation, either field or laboratory, of a problem of lesser scope than the thesis, or supplementary to the thesis. (Admission by arrangement.)</td>
</tr>
<tr>
<td>Biol. 697</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Thesis</td>
</tr>
<tr>
<td>Biol. 698</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>(Admission by arrangement.)</td>
</tr>
</tbody>
</table>

BROADCASTING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brd. 100</td>
<td>3 Credits</td>
<td>Fall-Spring</td>
<td>Radio Operations (3+0) 1 Credit Training in practical radio operations. Participation on KUAC staff required. May be repeated for a maximum of four credits.</td>
</tr>
<tr>
<td>Brd. 211</td>
<td>3 Credits</td>
<td>Fall-Spring</td>
<td>Introduction to Broadcasting (3+0) A survey of radio and television, with emphasis on the history, financing, regulation, and operation of the broadcasting industry.</td>
</tr>
</tbody>
</table>
Course Descriptions

BUSINESS ADMINISTRATION

B.A. 151 3 Credits Fall-Spring
Introduction to Business (3+0)
Business organization, nature of major business functions such as management, finance, accounting, marketing, personnel administration. The opportunities and requirements for professional business careers.

B.A. 165 3-4 Credits Fall-Spring
Business Administration for Technicians
A survey of core areas of business administration with particular emphasis upon organization and operation of small and middle-scale businesses. Business law, personal finance, manufacturing, marketing and finance at the introductory level. An introduction to business enterprise for non-business majors. (Prerequisites: Associate degree or freshman standing, except that credit may not be counted toward the four-year degrees in business and economics.)

B.A. 231 3 Credits Fall
B.A. 232 3 Credits Spring
Basic Business Writing (3+0)
A study of the basic techniques employed in written business communications. Work in the means of clarifying ideas for business use.

B.A. 253 1 Credit Fall
B.A. 254 1 Credit Spring
Business Practicum (0+1)
Work experience in an approved position with supervision and training in various phases of a business or institute. No student can receive more than eight (8) credits for work experience course of the practicum or internship type. (Prerequisite: Permission of the head of the department.)

B.A. 292 3 Credits Spring
Introduction to Data Processing (3+0)
(Same as O.A. 292.)
Introduction to data processing. Related management.

B.A. 303 3 Credits Fall-Spring
Advanced Leadership (3+0)
(Same as Mil. 303)
Comprehensive analysis of leadership styles and functions applicable to formal organizations. Lab: Advanced leadership development including enrichment seminars. (Prerequisite: Junior standing as a minimum.)

B.A. 395 3 Credits Fall
Financial Management (3+0)
Intensive analysis of the methods of financial planning and control, asset management, and other functions performed by the financial executive.

Brd. 213 2 Credits Fall-Spring
Announcing (1+2)
Microphone techniques, role of the announcer in broadcasting. Fundamentals of announcing; their practical application. (Prerequisite: Sp.C. 111 or admission by arrangement.)

Brd. 215 3 Credits Fall-Spring
Radio Broadcast Production (2+3)
Use of studio equipment; radio production techniques; tape editing.

Brd. 216 3 Credits Spring
Television Production (2+4)
Basic aspects of television production; floor directing, audio, camera, film chain, staging, lighting, switching.

Brd. 217 3 Credits Fall-Spring
Writing for Radio and Television (3+0)
Preparation of announcements, interviews, music continuity, special events programs, documentaries, commentaries, news, and other basic radio and television continuity.

Brd. 331 3 Credits Fall-Spring
Radio-Television Advertising (2+3)
Academic approach to economics and standards of radio and television advertising. Special emphasis on ethical considerations involved in the preparation and presentation of commercial broadcast copy. (Prerequisite: Brd. 217 or permission of the instructor.)

Brd. 341 3 Credits Fall-Spring
Radio-Television News (2+4)
Responsible news writing, editing, processing and delivery for the broadcast media. Special emphasis on ethical considerations in broadcast journalism. (Prerequisite: Brd. 217 and Jour. 201 or by permission.)

Brd. 371 3 Credits Every third semester
Educational Broadcasting (3+0)
The foundations of educational broadcasting, financing, ownership; programming various educational media: PTV, ITV, P-RADIO, CCTV. Educational broadcasting's role in the U.S.

Brd. 372 3 Credits Every third semester
Methods of Instructional Broadcasting (2+4)
Studio practices and procedures for the production of instructional programs. Underlying educational philosophy and actual in-studio practice.

Brd. 493 Credits Arranged Fall
Brd. 494 Credits Arranged Spring
Special Topics
Various subjects. (Admission by arrangement. Offered as demand warrants.)
Course Descriptions

B.A. 331 3 Credits Fall
Business Law (3+0)
Survey of the legal aspects of business problems; basic principles, institutions, and administration of law. Fall semester: contracts, agency, employment, negotiable instruments, and personal property sales. Spring semester: insurance, suretyship, partnerships, corporations, real property, trusts, wills, bankruptcy, torts and business crimes. (Prerequisite: junior standing.)

B.A. 332 3 Credits Spring
B.A. 333 3 Credits Spring
Survey principles, Institutions, and administration of law. Fall semester: corporations, real property, instruments, torts and business standing.)

B.A. 343 3 Credits Fall
Principles of Marketing (3+0)
Role of marketing in society and economy. The business firm as a marketing system, management of the firm’s marketing effort. (Prerequisite: Econ. 121, 122.)

B.A. 359 3 Credits Fall-Spring
Regulation of Industry (3+0)
Effects of government regulation, economic policy and executive policy and executive policy on private and public enterprise.

B.A. 360 3 Credits Fall
Production Management (3+0)
Basic manufacturing management. Survey of models and representative problems including scheduling machine set-up, plant layout, capital budgeting and production control. (Prerequisite: junior standing.)

B.A. 361 3 Credits Spring
Industrial Relations (3+0)
Personnel practice in industry; analysis of labor-management problems; methods and administrations of recruiting, selecting, training and compensating employees; labor laws and their applications. (Prerequisite: Psy. 101 and Soc. 101.)

B.A. 371 4 Credits Fall
Business Data Processing (4+0)
An analysis of computer based management information systems. COBOL will be taught and used. Required for all business administration majors. (Prerequisite: CIS 101.)

B.A. 372 3 Credits Spring
Advanced Fortran Programming (3+0)
Advanced Fortran techniques and applications. Use of magnetic tapes and discs will be covered. Applications will include programming of subroutines, statistical procedures and an introduction to simulation. (Prerequisites: Econ. 221 and CIS 101 or equivalent programming background.)

B.A. 380 3 Credits Fall
Management (3+0)
Fundamentals of the process of management including organization and administration. Planning, organizing, directing, coordinating and controlling business activity.

B.A. 409 3 Credits Fall
Industrial Organization and Public Policy (3+0) (Same as Econ. 409)
The study of the relationship of market structure to the economic conduct and performance of firms and industries; the determinants, measurement and classification of market structure; public policy toward mergers, industrial concentration and aggregate concentration. (Prerequisites: Econ. 121, 122 and 321.)

B.A. 423 3 Credits Fall-Spring
Investment Management (3+0)
Management securities, portfolios of individuals and institutions; basic security analysis; investment policies of banks, insurance companies, investment companies, and fiduciaries. (Prerequisite: B.A. 325.)

B.A. 425 3 Credits Spring
Advanced Corporate Financial Problems (3+0)
A consideration of corporate financial problems, planning and controls, and major functions performed by corporate financial managers. (Prerequisite: B.A. 325.)

B.A. 442 3 Credits Fall
Marketing Institutions and Channels (3+0)
Analysis of industry and firm operations as marketing institutions; evolution of distribution channels; and contemporary marketing problems. (Prerequisite: B.A. 343.)

B.A. 443 3 Credits Spring
Marketing and Analysis of Retailing Management (3+0)
Factors influencing behavior of consumer and business units; behavior change. The management of retailing functions in marketing; application of management principles in marketing system analysis and control. (Prerequisite: B.A. 343.)

B.A. 444 3 Credits Spring
Industrial Marketing (3+0)
Analysis of the marketing structure for industrial products. Product lines, channels of distribution, selling, pricing, warehousing and wholesaling problems. (Prerequisite: B.A. 343.)

B.A. 445 3 Credits Spring
Marketing Research (3+0)
Objective is to familiarize students with the basic processes and tools of marketing research with emphasis on utilization of research findings as an integral part of the managerial decision-making process. Students will apply techniques of data-gathering and analysis to a marketing problem.
Course Descriptions

B.A. 462 3 Credits Spring
Administrative Policy (3+0)
Organization role in a dynamic society; decision problems in varying social, economic, and political environments. (Prerequisite: Senior standing.)

B.A. 475 3 Credits Fall-Spring
Transportation and Logistics (3+0)
The essential focus of teaching and research in transportation is on systems planning, especially multimode systems. The program builds upon basic knowledge of the properties of transportation systems components, and the ability to analyze interactions among these components and between the transportation system and its environment. Subjects of instruction offered include fundamentals of transportation systems, transportation systems analysis, transport systems design, urban transportation systems, flight transportation, traffic flow theory, decision theory, system simulations, mathematical programming, network flow, economic analysis, evolution of regulatory policy, probabilistic analysis, and substantive applications to highway, air, rail and sea transport. Special consideration will be given to Alaskan transportation problems. Subjects will be presented by experienced specialists in the field. (Prerequisite: Econ. 221.)

B.A. 480 3 Credits Fall-Spring
Organization Theory (3+0)
Literature of organizational theory; emphasis on theoretical concepts, social science research techniques and organizational behavior. (Prerequisites: B.A. 361 and 380.)

B.A. 691 3 Credits Fall
Seminar in Marketing (3+0)
A survey of marketing institutions, systems, policies and practices. Review of marketing constituents in economic development, marketing theory and current problems. (Prerequisites: post-graduate or graduate standing. Approval of graduate student's advisory committee or the department head.)

B.A. 693 Credits Arranged Fall
B.A. 694 Credits Arranged Spring
Special Topics

B.A. 696 3 Credits Spring
Orientation to Research (3+0)
Review of statistical tools representative of the field quantitative analysis in business and economics. Survey of selected research methods in social sciences. Graduate topics in managerial economics, including advanced statistical methods, Bayesian statistics and their interpretation. Preparation and organization of the thesis. Current problems. (Prerequisites: post-graduate or graduate standing. Approval of graduate student's advisory committee or the department head. Normally taken the last semester prior to the thesis requirement.)

B.A. 697 Credits Arranged Fall
B.A. 698 Credits Arranged Spring
Thesis

CHEMISTRY

Chem. 103 4 Credits Fall
Chem. 104 4 Credits Spring
Contemporary Chemistry (3+3)
Descriptive courses with laboratory designed to provide orientation in chemistry for students in non-science and science related curricula. Either semester may be taken separately without prerequisites. Chem. 103: Introductory principles of inorganic chemistry and their applications. Chem. 104: Principles and applications of the chemistry of carbon in a modern economic, social and biological context.

Chem. 105 4 Credits Fall
General Chemistry (3+3)
Chem. 106 4 Credits Spring
General Chemistry & Introductory Qual. Analysis (3+3)
An introduction to chemistry, including atomic and molecular structure; the principles of chemical change.
Course Descriptions

and related energy changes. Chemistry 106 includes the chemistry of the elements. (Prerequisite: High school chemistry or permission of the instructor. For Chem 106, Chem. 105 is required.)

Chem. 185 Credits Arranged Fall Freshman Tutorial
Participation in seminar, non-course practica, individual projects, or other activities offered by the department to provide further opportunities for experience in the discipline. Enrollment limited to students with freshman standing.

Chem. 211 4 Credits Fall Chemical Principles (3+3)
An intensive, systematic study of the laws and concepts of chemistry, with considerable emphasis on mathematical aspects. Laboratory work will include both qualitative and quantitative procedures. (Prerequisites: High school chemistry or Chem. 103-104 and satisfactory performance on an advanced placement examination given three weeks into the semester, with Math. 200 at least corequisite. Four advanced placement credits may be given upon completion of Chem. 211 with a grade of C or better.)

Chem. 212 4 Credits Fall-Spring Introductory Quantitative Analysis (2+6)
The theoretical treatment of statistics, electrochemistry, and radiant energy methods. A rigorous treatment of acid-base, oxidation-reduction, and complex equilibria. The laboratory includes practice in volumetric, gravimetric, radiant energy, and electrochemical methods. (Prerequisites: Chem. 106 or 211, Math. 106 or equivalent.)

Chem. 223 4 Credits Fall Introductory Organic Chemistry (4+0)
An integrated, intensive, one-semester study of aliphatic and aromatic organic compounds, their occurrence, methods of preparation, reactions, and uses. (Prerequisite: Chem. 106 or 211.)

Chem. 321 3 Credits Fall Organic Chemistry (3+0)
A systematic study of the more important classes of carbon compounds, reactions of their functional groups, methods of synthesis, relations, and uses. (Prerequisite: Chem. 106 or 211 for Chem. 321; Chem. 321 for Chem. 322.)

Chem. 324 3 Credits Spring Organic Laboratory (1+8)
A laboratory course designed to illustrate modern techniques of isolation, purification, analysis, and structure determination of covalent, principally organic, compounds. (Prerequisites: Chem. 223 or 321 or permission of the instructor.)

Chem. 331 3 Credits Fall Physical Chemistry (3+4)
Fall semester: kinetic theory of gases, principles of thermodynamics, with applications to solutions, phase equilibria and chemical equilibria. Spring semester: chemical kinetics, electrochemistry, atomic, and molecular structure. (Prerequisites: Chem. 106 or 211, Math. 202, Phys. 104 or 212 or permission of the instructor; Chem. 331 for Chem. 332.)

Chem. 382 1 Credit Spring Scientific Glassworking (0+3)
Construction of scientific glassware. (Prerequisite: junior standing in chemistry or permission of the instructor.)

Chem. 402 3 Credits Spring Inorganic Chemistry (3+0)
Systematic application of the theories of atomic structure and chemical bonding to the elements as they appear in the Periodic System. (Prerequisite or corequisite: Chem. 332.)

Chem. 421 3 Credits Fall Advanced Organic Chemistry (3+0)
The theoretical interpretation of organic structure and reactions. (Prerequisites: Chem. 322, 332.)

Chem. 425 3 Credits Fall Advanced Organic Laboratory (1+6)
A laboratory course in the application of modern techniques to the rational synthesis of covalent organic and inorganic compounds. (Prerequisites: Chem. 223 or 322 and Chem. 324 or permission of the instructor. A reading knowledge of German is recommended.)

Chem. 431 3 Credits Fall Advanced Physical Chemistry (3+0)
Introduction to quantum chemistry and statistical thermodynamics. (Prerequisite: Chem. 332.)

Chem. 433 3 Credits Fall Instrumental Methods in Chemistry (1+6)
The application of instrumental methods to quantitative, qualitative, and structural analysis of chemical systems. (Prerequisite or Corequisite: Chem. 331 for Chem. 433; Chem. 332 for Chem. 334.)

Chem. 451 Credits Arranged Fall General Biochemistry
Fall semester: chemistry of protein, enzymes:
photosynthesis; carbohydrate biosynthesis; oxidative metabolism of carbohydrates, fatty acids and amino acids. Spring semester: biosynthesis of lipids, amino acids and nucleic acids; biochemical genetics: the genetic code, biosynthesis of protein, metabolic controls. (Prerequisite: Chem. 491 recommended or permission of the instructor.)

Chem. 491 0 or 1 Credit Fall
Chem. 492 0 or 1 Credit Spring
Seminar (1+0)
Discussion of current literature.

Chem. 493 Credits Arr. Fall
Chem. 494 Credits Arr. Spring
Special Topics
Various subjects studied including advanced organic chemistry, advanced physical chemistry, advanced analytical chemistry, history and literature of chemistry, industrial chemistry, instrumental analysis, chemistry of radioactivity and isotopes, petroleum chemistry spectroscopy. (Prerequisites: junior standing and three semesters (or 12 credits) of college chemistry with a grade of C or better.)

Chem. 495 Credits Arr. Fall
Chem. 496 Credits Arr. Spring
Research
Introduction to research at the undergraduate level. (Admission is by permission of the department head.)

Chem. 602 3 Credits Spring
Advanced Inorganic Chemistry (3+0)
Advanced topics in inorganic chemistry. Topic Areas: Solid state chemistry, X-ray diffraction, thermodynamic aspects, physical methods, unusual oxidation states, etc. (Prerequisite: Chem. 402 or 431.)

Chem. 612 3 Credits Fall
Advanced Analytical Chemistry (3+0)
Applications of equilibria and statistics to analytical methods. (Prerequisite: Chem. 332.)

Chem. 622 3 Credits Spring
Advanced Organic Chemistry II (3+0)
Modern interpretations of organic chemical reactions based on structure, kinetics, and energetics. (Prerequisites: Chem. 322, 332, 421. Offered in alternate years.)

Chem. 632 3 Credits Spring
Advanced Physical Chemistry II (3+0)
Applications of quantum mechanics to molecular bonding and electronic spectroscopy. (Prerequisite: Chem. 431.)

Chem. 633 3 Credits Spring
Spectroscopy and Molecular Structure (3+0)
Introduction to the rotational, vibrational, and magnetic resonance spectroscopy of polyatomic molecules. (Prerequisite: Chem. 431.)

Chem. 651 3 Credits Fall
Chem. 652 3 Credits Spring
Advanced Biochemistry (3+0)
Current research in one of the major biochemical disciplines: proteins, lipids, carbohydrates; biochemical genetics; comparative biochemistry; enzymology; physical biochemistry; vitamins and hormones. Arranged in consultation with instructor. (Prerequisites: Chem. 451 and 452 or equivalent.)

Chem. 661 3 Credits Fall-Spring
Chemical Oceanography I (3+0)
(Same as OCE 661.)
Chemical composition and properties of sea water; evaluation of salinity; pH, excess base, and carbon dioxide system, interface reactions; dissolved gases; organic components and trace inorganic components. (Prerequisites: Chem. 212, 322, 332, or permission of the instructor.)

Chem. 663 3 Credits Fall-Spring
Chemical Oceanography II (3+0)
(Same as OCE 663)
Selected topics in chemical oceanography, including stable isotope chemistry; chemical equilibria; chemistry of marine biota and their products; interaction of sediments and water; material exchange through sea air interface; marine photosynthesis and special topics of marine biochemistry; chemical technology as applied to oceanography; raw materials and industrial utilization. (Prerequisite: Chem. 661, or permission of the instructor. Offered in alternate years.)

Chem. 665 2 Credits Fall-Spring
Cellular Biochemistry (2+0)
Chemistry, structure and metabolism of microorganisms including growth kinetics and energetics, transport and control processes. (Prerequisite: Chem. 452 or equivalent. Offered in alternate years.)

Chem. 691 1 Credit Fall
Chem. 692 1 Credit Spring
Seminar (1+0)
Reviews of current research.

Chem. 693 Credits Arr. Fall
Chem. 694 Credits Arr. Spring
Special Topics
Various subjects, including kinetics, thermodynamics, statistical mechanics, photochemistry, colloid chemistry, nuclear chemistry, etc.
Course Descriptions

Chem. 695 Credits Arr. Fall
Chem. 696 Credits Arr. Spring
Research
Research which is not directly connected with thesis work. (Admission by arrangement and permission of the department head.)

Chem. 697 Credits Arr. Fall
Chem. 698 Credits Arr. Spring
Thesis

CIVIL ENGINEERING

C.E. 112 3 Credits Spring
Elements Surveying (2+3)
Use of transit, level and plane table, stadia, circular curves, elementary theory of measurement. (Prerequisite: E.S. 111.)

C.E. 118 3 Credits Spring
Mapping (2+3)
Maps and scales, projections, U.S. Public Land System, aerial photos with special applications to forestry and wildlife management. Plane tables, compasses, stadia, levels, transits, traverses. Intended primarily for students in wildlife management. (Prerequisite: junior standing or permission of the instructor. Offered in alternate years, next offered 1975.)

C.E. 334 3 Credits Spring
Properties of Materials (1+6)

C.E. 344 3 Credits Spring
Water Resources Engineering (2+2)
Fundamentals of engineering hydrology and hydraulic engineering. Precipitation, runoff, statistical methods, flood control, open channels, and groundwater. (Prerequisite: E.S. 341.)

C.E. 402 2 Credits Spring
Transportation Engineering (2+0)
Administration, economics, location, design, construction and maintenance of highways, railways, airports and other transportation facilities. (Prerequisite: C.E. 435 or permission of the instructor.)

C.E. 412 3 Credits Spring
Elements of Photogrammetry (2+3)
Elementary study of aerial and terrestrial photographs as applied to surveying and mapping. (Prerequisite: permission of the instructor. Offered in alternate years, next in 1974.)

C.E. 415 3 Credits Fall
Advanced Surveying (2+3)
Traverses, curves, field astronomy, state coordinate systems, adjustments. (Prerequisite: C.E. 112.)

C.E. 416 1 Credit Spring
Boundary Surveying (1+0)
Surveying problems related to land subdivision. Both metes and bounds descriptions and platted subdivisions are considered. Strongly recommended for those who wish to practice land surveying. (Prerequisite: C.E. 415 or other surveying experience acceptable to the instructor.)

C.E. 422 2 Credits Spring
Foundation Engineering (2+0)
Principles of foundation action, spread footings, mats, pile foundations, retaining walls and bulkheads, bridge piers, cofferdams and abutments. (Prerequisite: C.E. 435.)

C.E. 431 4 Credits Spring
Structural Analysis (3+3)
Statically determinate structures. Loadings. Graphical and analytical solutions for stresses and deflections. Indeterminate structures. Influence lines. (Prerequisite: E.S. 331.)

C.E. 432 4 Credits Spring
Structural Design (3+3)

C.E. 435 3 Credits Fall
Soil Mechanics (2+3)
Identification, description, and physical properties of soils. Subsurface exploration, frost action. Entire soil mass surveyed for effect on substructure design. (Prerequisites: E.S. 331, C.E. 334.)

C.E. 441 4 Credits Fall
Sanitary Engineering (3+3)
Theory of works for conservation, collection, treatment, and distribution of water for domestic and industrial use, and theory of wastewater treatment and disposal. (Prerequisite: E.S. 341 or permission of the instructor.)

C.E. 491 Credits Arr. Fall-Spring
Seminar
C.E. 493 Credits Arr. Fall
C.E. 494 Credits Arr. Spring
Special Topics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.E. 603</td>
<td>3</td>
<td>Fall</td>
<td>Arctic Engineering (3+0) Application of engineering fundamentals to problems of advancing civilization in polar regions. Logistics, foundations on frozen ground and ice, thermal aspects of structures and materials; transport and communications; heating and ventilating.</td>
</tr>
<tr>
<td>C.E. 604</td>
<td>3</td>
<td>Spring</td>
<td>Transportation Engineering (3+0) Land, air, and marine transportation, facilities, design, utilization, planning, and administration.</td>
</tr>
<tr>
<td>C.E. 611</td>
<td>3</td>
<td>Fall</td>
<td>Transportation Design (1+6) Primarily a laboratory course in pavement and embankment design.</td>
</tr>
<tr>
<td>C.E. 612</td>
<td>3</td>
<td>Spring</td>
<td>Control Surveys (3+0) Geodetic surveying, where the shape of the earth must be considered. Both horizontal and vertical control will be studied. Adjustments of level nets, traverses, triangulation, and trilateration. (Prerequisites: C.E. 415 or other surveying experience acceptable to the instructor.)</td>
</tr>
<tr>
<td>C.E. 615</td>
<td>3</td>
<td>Fall</td>
<td>Geodetic surveying, where the shape of the earth must be considered. Both horizontal and vertical control will be studied. Adjustments of level nets, traverses, triangulation, and trilateration. (Prerequisites: C.E. 415 or other surveying experience acceptable to the instructor.)</td>
</tr>
<tr>
<td>C.E. 617</td>
<td>3</td>
<td>Fall</td>
<td>Control Surveys (3+0) Geodetic surveying, where the shape of the earth must be considered. Both horizontal and vertical control will be studied. Adjustments of level nets, traverses, triangulation, and trilateration. (Prerequisites: C.E. 415 or other surveying experience acceptable to the instructor.)</td>
</tr>
<tr>
<td>C.E. 618</td>
<td>3</td>
<td>Arranged</td>
<td>Transportation Planning Future design problems with special emphasis on mass transit and mode interconnection. (Prerequisite: C.E. 611 or enrollment in C.E. 612.)</td>
</tr>
<tr>
<td>C.E. 620</td>
<td>3</td>
<td>Fall</td>
<td>Civil Engineering Construction (3+0) Construction equipment and methods, construction management and accounting, construction estimates and costs. (Prerequisites: E.S. 450 or equivalent.)</td>
</tr>
<tr>
<td>C.E. 621</td>
<td>3</td>
<td>Fall</td>
<td>Advanced Foundation Engineering (2+3) Correlation principles in the analysis and design of spread footings, mats, pile foundations, and retaining walls. Specialty correlation to the class of structural design.</td>
</tr>
<tr>
<td>C.E. 631</td>
<td>3</td>
<td>Fall</td>
<td>Advanced Structural Analysis (3+0) Continuation of C.E. 431. Continuity in structure. Elastic and plastic theories. Arches and shells. Tall frames. (Prerequisite: C.E. 431.)</td>
</tr>
<tr>
<td>C.E. 632</td>
<td>3</td>
<td>Spring</td>
<td>Advanced Structural Design (2+3) Design of complex structures and frames. Live, dead, and earthquake loadings. Structural joints, columns, connectors, ties, and struts. Application of modern materials and techniques to design. (Prerequisite: C.E. 631.)</td>
</tr>
<tr>
<td>C.E. 644</td>
<td>3</td>
<td>Spring</td>
<td>Hydraulic Engineering (2+3) Advanced analysis and design of hydraulic engineering devices, structures and machines. Special emphasis on hydraulic systems and control.</td>
</tr>
<tr>
<td>C.E. 649</td>
<td>3</td>
<td>Fall or Spring</td>
<td>City and Regional Planning (3+0) Elements of city and regional planning for engineers. Demography, land use, physical planning techniques.</td>
</tr>
<tr>
<td>C.E. 661</td>
<td>3</td>
<td>Fall</td>
<td>Advanced Hydrology (3+0) The fundamentals of precipitation — runoff relationships, hydrograph analysis, general system analysis, statistical analysis. Emphasis given to dynamic hydrologic processes in cold regions. (Prerequisite: Permission of the instructor.)</td>
</tr>
<tr>
<td>C.E. 662</td>
<td>3</td>
<td>Spring</td>
<td>Surface Water Dynamics (3+0) Principles of open channel flow, ice covered flow, unsteady flow, streamflow as a sediment and pollution transport agent. (Prerequisite: E.S. 341.)</td>
</tr>
<tr>
<td>C.E. 663</td>
<td>3</td>
<td>Fall</td>
<td>Ground Water Dynamics (3+0) Fundamentals of geohydrology, hydraulics of flow through porous media, well hydraulics, and ground water pollution, ground water resources development. (Prerequisite: E.S. 341.)</td>
</tr>
<tr>
<td>C.E. 670</td>
<td>3</td>
<td>Spring</td>
<td>Waves and Tides (2+1) (Same as OCE 670) Generation and propagation of waves at sea, theory of waves, wave spectra and forecasting, observation and recording of ocean waves, tsunamis, tides, internal waves.</td>
</tr>
<tr>
<td>C.E. 674</td>
<td>3</td>
<td>Spring</td>
<td>Environmental Hydrodynamics (2+1) (Same as OCE 674 and Phys. 674.) Mechanics of fluids on a rotating earth. Navier Stoke's equations, boundary layer phenomena, turbulent flow, and applications of hydrodynamics to motion of stratified fluids such as the atmosphere and ocean.</td>
</tr>
<tr>
<td>C.E. 676</td>
<td>3</td>
<td>Fall</td>
<td>Coastal Engineering (2+1) (Same as OCE 676) Review of deep and shallow water waves, littoral drift, coastal structures, pollution problems, harbor seiches. (Prerequisite: C.E. 670.)</td>
</tr>
</tbody>
</table>
Course Descriptions

C.E. 691 1 Credit Fall
C.E. 692 1 Credit Spring
Graduate Seminar (1+0)
Reports and papers on engineering topics. Practice in public speaking. (Prerequisite: permission of the instructor.)

C.E. 693 Credits Arr. Fall
C.E. 694 Credits Arr. Spring
Special Topics
Various subjects. (Prerequisite: permission of the instructor.)

C.E. 697 Credits Arr. Fall
C.E. 698 Credits Arr. Spring
Thesis
Individual study or research for students of special aptitude.

COMPUTER INFORMATION SYSTEM

CIS 101 3 Credits Fall
Introduction to Data Processing and Fortran (3+0)
A beginning course covering topics in machine organization, problem formulation, Fortran, programming, information flow, management, and applications of automatic data processing systems.

CIS 103 3 Credits Fall
Techniques of Organization (3+0)
Programming sequential and random access devices. Methods of organizing, sorting, merging files on cards, tapes, disks, and drums.

CIS 104 3 Credits Spring
Operations Management (3+0)
Methods of accounting for, organizing, and supervising operation of computing equipment. Personnel relations and company organization.

CIS 201 3 Credits Spring
COBOL (2+2)
Training and practice in writing problems in the COBOL language. Multiple file processing, editing, and reporting generating routines. (Prerequisite: B.A. 371.)

CIS 209 3 Credits Fall
Principles of Programming with Business Applications (3+0)
Commonly automated areas in businesses are examined. Selected problems are programmed in COBOL, Payroll, Inventory Control, Accounts Renewable, General Ledger. (Prerequisites: Acc. 102, B.A. 371.)

CIS 210 4 Credits Spring
Systems Design and Analysis (3+3)
Concepts and techniques of designing information systems. Topics include systems theory; data collection classification, transmission, and display, data base organization; sequential and random techniques; online systems; and computer software related to system design.

CIS 220 3 Credits Spring
Basic Programming Languages (3+0)
Programming in selected computer languages including ASSEMBLER, RPG, and machine language. (Prerequisite: CIS 101.)

ECONOMICS

Econ. 101 3 Credits Fall-Spring
Introduction to Current Economic Problems (3+0)
A one semester course designed primarily for the student who plans no further work in economics. The course utilizes a less theoretical approach than is customary in introductory economics courses and focuses on such current problems as unemployment, inflation, economic growth, balance of payments, industrial strikes, etc.

Econ. 121 3 Credits Fall-Spring
Principles of Economics I (3+0)
Introduction to economics; analysis and theory of national income; money and banking; public finance and taxation; economic systems.

Econ. 122 3 Credits Fall-Spring
Principles of Economics II (3+0)
Theory of prices and markets; income distribution; contemporary problems of labor, agriculture, public utilities, international economic relations.

Econ. 221 3 Credits Fall
Introduction to Statistics for Economics and Business (3+0)
Problems in economics and business translated into statistical terms. Organizing of data; identifying of populations and their parameters; sample selection and use of sample data; linear correlations; time series analysis; index numbers. (Prerequisite: Math. 108 or Math. 122.)
Econ. 235 3 Credits Spring
Resource Economics (3+0)
Economic analysis as related to the productive use of both renewable and non-renewable resources. Specific topics include: benefit-cost analysis, externalities, valuation of resources, conservation. (Prerequisites: Econ. 122, or permission of instructor.)

Econ. 236 3 Credits Summer
Environmental Economics (3+0)
Re-examination of economic concepts, goals and philosophies when the environment is explicitly treated as a scarce resource; the costs, benefits and institutional implications of alternative solutions to the problem of environmental decay.

Econ. 321 3 Credits Fall
Intermediate Microeconomics (3+0)
Analysis of demand and supply under various market forms; cost and theory of production; factor pricing and theory of distribution; survey of welfare economics. (Prerequisites: Econ. 121 & 122.)

Econ. 324 3 Credits Spring
Intermediate Macroeconomics (3+0)
Concepts and measurement of income; analysis of aggregate demand and supply and their relation to the level of prices, employment and economic growth. (Prerequisites: Econ. 121 & 122.)

Econ. 328 3 Credits Spring
Statistical Methods (3+0)
Classical statistics and regression analysis applied to economics and business problems. Specific topics covered include descriptive statistics, elements of probability, sampling, point and interval estimation, hypothesis testing, analysis of variance and regression analysis. (Prerequisites: Econ. 221, Math. 200)

Econ. 332 3 Credits Fall
Economic History of the United States (3+0)
History of the U.S. economy with special emphasis on the process of economic growth. (Offered alternate years. Next offered 1974.)

Econ. 337 3 Credits Fall
Economic Development (3+0)
Theories of growth and economic development; characteristics of the developing nations; analysis of major problems and policy issues; economic, political and social reforms. (Prerequisites: Econ. 121 and 122, or permission of the instructor.)

Econ. 350 3 Credits Fall
Money and Banking (3+0)
The liquid wealth system in the United States, to include the commercial banking system, the Federal Reserve System and nonbank financial institutions; the regulation of money and credit and its impact on macroeconomic policy objectives. (Prerequisites: Econ. 121 and 122. Offered in alternate years, next in 1974-75.)

Econ. 351 3 Credits Fall
Public Finance (3+0)
Federal, state and local government taxation, spending and debt; their effects on allocation, distribution, stabilization and growth; the role of fiscal policy. (Prerequisites: Econ. 121 and 122. Offered in alternate years. Next offered 1973.)

Econ. 409 3 Credits Fall
Industrial Organization and Public Policy (3+0)
(Same as B.A. 409)
The study of the relationship of market structure to the economic conduct and performance of firms and industries; the determinants, measurement and classification of market structure; public policy toward mergers, industrial concentration and aggregate concentration. (Prerequisites: Econ. 121, 122, and 321.)

Econ. 420 3 Credits Fall
Labor Economics (3+0)
Labor market analysis; employment and unemployment, wage rates, structure and composition of the labor force; economic aspects of unionism, labor legislation, social insurance. (Prerequisites: Econ. 121, 122.)

Econ. 423 3 Credits Spring
Comparative Economic Systems (3+0)
Contrasts structure, institutions, and dynamics of selected private enterprise, collectivist, and underdeveloped economies. (Prerequisites: Econ. 121, 122.)

Econ. 424 3 Credits Spring
Managerial Economics (3+0)
Interpretation of economic data and applications of economic theory in business firms. Bridging the gap between theory and practice through empirical studies, cases and decision problems. Particular emphasis upon decision-making based heavily upon analysis of data developed from research. (Prerequisite: Econ. 321.)

Econ. 425 3 Credits Fall
History of Economic Thought (3+0)
Economic thought from the physiocrats to the present, classical and neoclassical theory, exponents and critics; contemporary development in economic theory. (Prerequisites: Econ. 121, 122 and three credits of upper division courses in economics or other social sciences. Offered alternate years. Next offered 1974.)
Course Descriptions

Econ. 435 3 Credits Fall Economics of Resources (3+0)
Concepts of resources; economic theory applied to resource utilization and management; resources and economic development; theories and problems of conservation; use of Alaska examples. (Prerequisites: Econ. 121 and 122.)

Econ. 463 3 Credits Spring International Economics (3+0)
Pure theory of international trade; comparative cost, terms of trade, and factor movements. International disequilibrium; balance of payments and its impacts on national economy, capital movement, economic development through international trade. (Prerequisites: Econ. 121 and 122. Offered in alternate years, next in 1974.)

Econ. 471 3 Credits As demand warrants Seminar in Economic Theory (3+0)
Content will vary but will deal with advanced topics in economic theory. (Prerequisite: Permission of instructor.)

Econ. 472 3 Credits Spring Seminar in Contemporary Economic Problems (3+0)
A study of current economic and business problems utilizing the knowledge and analytical techniques obtained in prerequisite courses. (Prerequisites: Econ. 221, 321, and 324.)

Econ. 493 Credits Arr. Fall Econometrics (3+0)
Applications of statistical methods in testing economic theory and estimating economic relationships. Emphasis on multiple regression analysis, serial correlation, and other problems, and simultaneous equation methods. Selected applications in economics. (Prerequisites: Econ. 691, 692, 610.)

Econ. 606 3 Credits Spring Monetary Theory (3+0)
Advanced topics in monetary theory with special reference to policy criteria and control techniques. (Prerequisites: Econ. 691, 692.)

Econ. 608 3 Credits Fall Industrial Organization and Public Policy (3+0)
A study of market structure and performance, mergers, stochastic theories of industry structure; innovation, and technological change; location and transportation; public utilities; problems in the formation of public policy. (Prerequisite: Econ. 691.)

Econ. 610 3 Credits Fall Mathematical Economics (3+0)
Application of theorems from calculus, matrix algebra, and probability theory, in various areas of economics such as linear programming, and non-linear programming, input/output analysis, game theory, demand theory, production theory and expected utility theory.

Econ. 612 3 Credits Spring Econometrics (3+0)
Applications of statistical methods in testing economic theory and estimating economic relationships. Emphasis on multiple regression analysis, serial correlation, and other problems, and simultaneous equation methods. Selected applications in economics. (Prerequisites: Econ. 691, 692, 610.)

Econ. 615 3 Credits Spring Seminar in Labor Economics and Wage Determination (3+0)
Wage levels, structure; income distribution, effects of education on earnings; history of labor unions in the United States; economic, political and social impact of unionism. (Prerequisites: Econ. 691, 692.)

Econ. 629 3 Credits Spring International Economics (3+0)
Capital movements. Balance of payments adjustments. Causes of trade and its effects on the allocation of resources, income distribution, growth and development, commercial policies. (Prerequisites: Econ. 691, 692.)
Econ. 694 3 Credits Spring
Petroleum Economics (3+0)
Economics of petroleum exploration and extraction; review of public policies governing petroleum industry, import policies, tax concessions, etc. (Prerequisites: Econ. 610, 691, 692.)

Econ. 696 3 Credits Spring
Seminar in Managerial Economics (3+0)
A survey of present sources of economic data and an intensive study of the most up-to-date methods of applying this data to the problems of business planning. A study of emerging business strategies resulting from the "information explosion" and the "electronic age."

Econ. 698 3 Credits Spring
Economics of Natural Resources (3+0)
Economic analysis relevant to resource use and management; development and conservation of natural resources; taxation; institutional factors and public measures affecting the utilization of natural resources. (Prerequisite: Permission of instructor.)

Course Descriptions

Econ. 693 Credits Arr. Fall
Econ. 694 Credits Arr. Spring
Special Topics

Econ. 695 1-3 Credits Fall
Econ. 696 1-3 Credits Spring
Seminar in Economic Research
Methods of economic research used in analyzing specific, assigned topics. Discussion of problems encountered, results obtained. Report and formal paper required. (Prerequisites: graduate standing and permission of the instructor.)

EDUCATION

Ed. 201 3 Credits Fall-Spring
Orientation to Education (1+6)
Designed to acquaint the prospective teacher with the nature of teaching, including the scholastic, professional, and personality requirements for effective teaching. Involves laboratory time in the public schools as teacher's aide. Open to all students. Required for students majoring in education.

Ed. 301 3 Credits Fall
Social Studies for Elementary Teachers (3+0)
Methods and materials adaptable to modern curriculum in elementary social studies. (Prerequisites: Ed. 313 and prerequisites thereto.)

Ed. 302 3 Credits Spring
Language Arts for Elementary Teachers (3+0)
Definition; role of language in children's learning; specific language skills to be taught in grades one through eight; methods and materials for effective teaching; organization for instruction; all aspects of the language arts, except reading. (Prerequisites: Ed. 313 and prerequisites thereto.)

Ed. 304 3 Credits Spring
Literature for Children (3+0)
Criteria for evaluating children's books and application of criteria to books selected by student; history of children's literature; study of outstanding authors, illustrators and content of specific categories of literature; book selection aids and effective use of literature to promote learning. (Prerequisite: Psy. 245 or permission of the instructor.)

Ed. 306 3 Credits Fall
Teaching of Science in Elementary Schools (3+0)
Modern concepts, methods and materials of teaching science. (Prerequisites: Ed. 313 and prerequisites thereto.)
Course Descriptions

Ed. 307 3 Credits Spring
Teaching of Arithmetic (3+0)
Present day concepts, methods and materials.
(Prerequisites: Math. 106 or its equivalent, Ed. 313 and
prerequisites thereto. In-service teachers may
substitute Math. 345 for the mathematics prerequisites.)

Ed. 308 3 Credits Spring
Physical Education for the Elementary
School (2+3)
(Same as P.E. 306)
Philosophy, source materials, games, rhythms, group
activities and program planning; participation required
to gain skills and techniques of teaching activities for
elementary grade children. (Prerequisites: Ed. 313 and
prerequisites thereto.)

Ed. 309 3 Credits Fall-Spring
Elementary School Music Methods (3+0)
(Same as Mus. 309)
Principles, procedures, and materials for teaching
music to children at the elementary level.
(Prerequisites: Ed. 313 and prerequisites thereto.)

Ed. 311 3 Credits Spring
Audio-Visual Methods and Materials (3+2)
Selection and use of audio-visual materials in teaching
and learning at all levels of education. (Prerequisites:
Ed. 313 and prerequisites thereto.)

Ed. 313 3 Credits Fall-Spring
Educational Psychology (3+0)
Study of psychological principles and experience in
applying them to classroom teaching and learning in
public school classrooms. Must be taken in conjunction
with Ed. 314. (Prerequisites: Psy. 101 and 245 or 246.)

Ed. 314 1 Credit Fall-Spring
Practicum in Tutoring: Behavior Modifications
(0+1)
This course offers college students the opportunity to
apply — in practical situations — the techniques of
behavior modification / contingency management.
Must be taken in conjunction with Ed. 313.
(Prerequisites: Psy. 101 and Psy. 245 or 246.)

Ed. 332 3 Credits Fall-Spring
Tests and Measurements (3+0)
Theory and practice of educational evaluation;
emphasis on testing aspects most applicable for
classroom teachers; construction of teacher-made tests;
terpretation of teacher-made and standardized
instrument emphasized. Not open to students having
credit in Psy. 373. (Prerequisites: Ed. 313 and
prerequisites thereto.)

Ed. 345 3 Credits Spring
Sociology of Education (3+0)
(Same as Soc. 345)
Impact of culture on schools. Examination of
contemporary social trends and relationships among
church, school, government, and family. (Prerequisite:
Soc. 101.)

Ed. 348 3 Credits Spring
History of Education (3+0)
Development of education in Western civilization and
its implications for American education. (Prerequisites:
History 101, 102 or History 131, 132.)

Ed. 351 1 Credit Summer
Workshop on Alaska
A workshop consisting of lectures and demonstrations
by authorities in anthropology, biology, education,
geography, mining, geology, history, literature, art,
wildlife, and various other teaching fields.

Ed. 384 3 Credits Fall
The Exceptional Child (3+0)
Characteristics, identification, diagnosis, and
remediation procedures for use with exceptional
children. (Prerequisites: Ed. 313 and prerequisites
thereto and junior standing.)

Ed. 402 3 Credits Fall-Spring
Methods of Teaching (3+0)
Principles and methods of teaching management,
routine, daily programs, etc. (Prerequisites: Ed. 332 and
prerequisites thereto. Must be taken concurrently with
Ed. 452.)

Ed. 404 3 Credits As demand warrants
Methods of Teaching Foreign Languages (3+0)
Discussion of the particular problems related to the
teaching of foreign languages in the secondary schools,
evaluation of teaching aids, audio-visual equipment
and the language laboratory, and methods such as
"grammar - translation," "direct," "audio-lingual;"
recent research on the subject. (Prerequisites: 100
semester hours, Ed. 332 and prerequisites thereto.)

Ed. 405 3 Credits As demand warrants
Methods of Teaching Music (3+0)
(3+0) (Same as Mus. 405)
Methods and problems of teaching music in junior and
senior high schools, with emphasis on the general music
program. (Prerequisites: 100 semester hours, Ed. 332
and prerequisites thereto, and Mus. 232, or permission
of the instructor.)

Ed. 406 3 Credits As demand warrants
Methods of Teaching Physical Education
(3+0) (Same as P.E. 406)
Selection of materials and presentation methods for
secondary school physical education. (Prerequisites:
100 semester hours, Ed. 332 and prerequisites thereto.)
Course Descriptions

Ed. 407 3 Credits As demand warrants
Methods of Teaching Home Economics (3+0)
Problems and methods in selecting and organizing materials for instruction; comparison and evaluation of methods, laboratory techniques, supplies, equipment; economy of time and materials. (Admission by arrangement. Prerequisites: 100 semester hours, Ed. 332 and prerequisites thereto.)

Ed. 408 3 Credits As demand warrants
Methods of Teaching Business Education (3+0)
(Same as O.A. 408)
Organization and content of high school business education courses; equipping a business education department, including selection, care, and maintenance; methods in teaching bookkeeping, typewriting, shorthand, and transcription. (Admission by arrangement. Prerequisites: 100 semester hours, Ed. 332 and prerequisites thereto.)

Ed. 409 3 Credits Fall
The Teaching of Reading (3+0)
Importance and nature of reading. Specific steps involved in the teaching of reading, word analysis, comprehension, interpretation, reading rate; new developments in reading instruction emphasizing appropriate materials. (Prerequisites: Ed. 313 and prerequisites thereto.)

Ed. 421 3 Credits Spring
Secondary Education (3+0)
Development of a working concept of secondary education in the U.S., its history, objectives, curriculum, organization, practices, and consideration of current issues. (Prerequisites: Ed. 313 and prerequisites thereto.)

Ed. 422 3 Credits Fall
Philosophy of Education (3+0)
Basic philosophic concepts and their historical development; philosophy applied to education and related issues and problems; examinations of contributions of outstanding educators. (Prerequisite: Phil. 201 or permission of instructor.)

Ed. 428 3 Credits Spring
Principles and Practices of Guidance (3+0)
Introduction to the philosophies; organization, patterns, tools, and techniques that aid teachers and guidance personnel in preparing students for responsible decision-making in modern society. (Prerequisites: Ed. 332 and prerequisites thereto.)

Ed. 446 3 Credits As demand warrants
Public School Organization, Control, and Support (3+0)
Fundamentals of public school organization, control, and support. Relation of federal, state, and local agencies. Problems incident to public school organization, control, and support in Alaska. (Prerequisite: senior standing in education. Not open to students who took Ed. 442, 542 before they were abolished.)

Ed. 452 6 Credits Fall-Spring
Student Teaching (0+18)
Supervised teaching in elementary or secondary schools of Fairbanks or in a school approved by the Department of Education. The department may limit registration, determine assignments, prescribe the number of teaching hours required, and cancel the registration of students doing unsatisfactory work. (Prerequisite: see page 104 for requirements for admission to student teaching. May be taken concurrently with Ed. 402.)

Ed. 461 Credits Arr. As demand warrants
Research
On approval of the head of the Education Department, fourth year students who show outstanding ability for individual study in education may undertake research during their final year.

Ed. 480 3 Credits Spring
Education of Culturally Different Youth (3+0)
Interdisciplinary study of problems encountered by teachers in educating culturally atypical pupils. Consideration of psychological and social factors inherent in the educational process. Specific attention given to curricular improvement and teaching strategies appropriate for culturally different students. (Prerequisites: Ed. 313 and prerequisites thereto and junior standing.)

Ed. 491 Credits Arr. As demand warrants
Seminar
Current topics in education. (Prerequisite: permission of the head of the department.)

Ed. 493 Credits Arr. Fall
Special Topics
Various subjects; principally directed study, discussion and research.

Ed. 501 3 Credits Fall-Spring
Master of Arts in Teaching Seminar (3+0)
Expectations, concerns, and questions regarding elementary and secondary classroom teaching today. Selected major trends, problems, and issues in elementary and secondary education and the profession of elementary and secondary teaching. (Prerequisite: Admission to Master of Arts in Teaching program or permission of the instructor.)
Course Descriptions

Ed. 604 3 Credits As demand warrants
Diagnosis and Correction of Reading
Deficiencies (3+0)
Nature of the reading process; emphasis on psychology involved in discerning reading difficulties; testing programs to ascertain specific disabilities in readiness, vocabulary, word-attack, comprehension, speed and accuracy; specific suggestions for their correction; newer approaches to teaching reading. (Prerequisites: Ed. 409 and experience in the teaching of reading.)

Ed. 605 2 Credits As demand warrants
Reading Lab (0+6)
Working with a child who has been identified as having reading problems using testing and remedial techniques appropriate to his need. (Prerequisites: Ed. 409 and Ed. 604. May be taken concurrently with Ed. 604.)

Ed. 607 3 Credits As demand warrants
Reading in Secondary Schools (3+0)
Organizing and conducting a comprehensive reading program in the secondary school. Specific skills involved in the teaching of reading, emphasizing new developments in instruction and materials. Open to all secondary teachers.

Ed. 608 3 Credits As demand warrants
The Improvement of Elementary Teaching (3+0)
Emphasis on improvement of elementary teaching; a re-evaluation of teaching practices; relating of principles of learning, instructional procedures, and recent developments in education to situations made meaningful through the student's teaching experience. (Prerequisite: graduate standing in education and elementary teaching experience.)

Ed. 620 3 Credits As demand warrants
Curriculum Development (3+0)
Basic definition of curriculum. Present need for curriculum improvement. Criteria for selection of broad goals. Types of curriculum framework examined. Consideration of the organization of specific learning experiences as part of the curriculum structure. (Prerequisites: Ed. 313 and graduate standing in education.)

Ed. 623 3 Credits As demand warrants
Principles of Individual Counseling (3+0)
(Same as Psy. 623)
Counseling techniques and procedures in education, social work and on a limited basis, clinical psychology; their applications by the classroom teacher and guidance specialist in assisting students with adjustment problems within a normal range. (Prerequisites: Ed. 426, Psy. 338 or 406 and permission of the instructor.)

Ed. 624 3 Credits As demand warrants
Group Counseling (3+0)
(Kinds and types of groups with emphasis on methods, problems and needed skills in working with groups in a counseling situation. (Prerequisites: Ed. 426, 623.)

Ed. 627 3 Credits Fall
Education Research (3+0)
Techniques of education research; selection of topics and problems, data gathering, interpretation and preparation of reports. (Prerequisite: graduate standing in education.)

Ed. 628 3 Credits As demand warrants
Analysis of the Individual (3+0)
(Prerequisite: Psy. 628)
Means of acquiring data pertinent to the individual. Interpreting data and formulating case reports conducive to greater understanding. (Prerequisite: Ed. 426.)

Ed. 629 3 Credits As demand warrants
Individual Tests of Intelligence (3+0)
(Prerequisite: Psy. 629)
Individual intelligence tests with emphasis on the Revised Stanford-Binet Intelligence Scale and the Wechsler Intelligence Scales. (Prerequisites: Ed. 332 and permission of the instructor.)

Ed. 630 3 Credits As demand warrants
Laboratory in Individual Tests of Intelligence (3+0)
(Prerequisite: Psy. 630)
Provides laboratory experience in administration of the Revised Stanford-Binet Intelligence Scale or the Wechsler Intelligence Scales. (Prerequisites: Ed. 629 and permission of the instructor.)

Ed. 631 3 Credits As demand warrants
Advanced Educational Psychology: Developmental (3+0)
Stresses understanding of human emotional, mental, physical, and social development. Emphasis on individual differences. Assumes one previous course in human development, educational psychology, and teaching experience. (Prerequisite: graduate standing.)

Ed. 632 3 Credits As demand warrants
Occupational Information (3+0)
(Prerequisite: Psy. 632)
Principles and practices of vocational guidance. Explains process of choosing a vocation, theories of vocational choice, sources and dissemination of occupational information. (Prerequisites: graduate standing, Ed. 426 and permission of the instructor.)
Ed. 633 2 Credits As demand warrants
Organization, Administration, and Supervision of Guidance (2+0)
For administrators, guidance personnel and others interested in developing or evaluating a guidance program; selection procedures and supervision of guidance personnel are considered. (Prerequisite: Ed. 428.)

Ed. 634 1 to 3 Credits Arr. Fall-Spring
Counseling Practicum
(Same as Psy. 634)
Provides supervised field experience, including preparatory activities in an educational and agency setting. (Prerequisite: Approval of instructor. May be repeated for a maximum of six credits.)

Ed. 636 2 Credits As demand warrants
Advanced Public School Administration: Cases and Concepts (2+0)
Case study approach to public school administration; identification and analysis of basic issues and problems; identification of pertinent data and possible solutions. (Prerequisite: first course in public school administration.)

Ed. 637 3 Credits As demand warrants
Public School Administration (3+0)
Responsibility pertaining to the organization of a school and the direction of personnel. Functions of instructional leadership. Public school administration as a career. Problems incident to public school administration in Alaska. (Prerequisites: Ed. 446 and graduate standing in education.)

Ed. 638 3 Credits As demand warrants
Supervision and Improvement of Instruction (3+0)
Development, purpose, organization of supervisory programs; special attention to current in-service education programs. (Prerequisite: graduate standing in education.)

Ed. 639 3 Credits As demand warrants
Public School Finance (3+0)
Contemporary basis for raising and distributing federal, state and local education funds; problems of school financing in Alaska. (Prerequisite: graduate standing in education.)

Ed. 641 3 Credits As demand warrants
School Law (3+0)
Rights and responsibilities of teachers and pupils; rulings of the Attorney General; decisions of the courts, regulations of the State Board of Education. (Prerequisite: graduate standing in education.)

Course Descriptions

Ed. 660 6 Credits As demand warrants
Internship
Field work in an appropriate educational or agency setting. Each student will complete an approved field study project. (Prerequisite: approval of student's advisory committee and admission to candidacy for the Ed.S. degree.)

Ed. 691 Credits Arr. As demand warrants
Educational Seminar
Current topics in education. Maximum credit allowed toward advanced degrees: four credits. (Admission by arrangement.)

Ed. 693 Credits Arr. Fall
Ed. 694 Credits Arr. Spring
Special Topics
Various subjects, principally by directed study, discussion, and research. (Admission by arrangement. Prerequisite: Ed. 627 when taken as independent project in lieu of thesis.)

Ed. 695 Credits Arr. Fall
Ed. 696 Credits Arr. Spring
Research Education
Independent project in lieu of thesis. (Admission by arrangement. Prerequisite: Ed. 627.)

Ed. 697 Credits Arr. Fall
Ed. 698 Credits Arr. Spring
Thesis
(Offered as demand warrants. Prerequisite: Ed. 627.)

ELECTRICAL ENGINEERING

E.E. 102 3 Credits Fall
Introduction to Electrical Engineering (3+0)
Basic modern devices, concepts, technical skills, and instruments of electrical engineering.

E.E. 203 4 Credits Fall
E.E. 204 4 Credits Spring
Electrical Engineering Fundamentals (3+3)
Analysis of alternating current circuits using complex notation and phasor diagrams; resonance; transformers; Fourier analysis; the complex frequency plane; three-phase circuits. (Prerequisite: Math. 200.)
Course Descriptions

E.E. 323 1 Credit Fall
Electrical Engineering Lab I (0+3)
Laboratory problems emphasizing measurement techniques, laboratory procedures, and operation principles of basic instruments. Laboratory exercises basically in circuits, electronics, and control. Semester design problems. (Corequisites: E.E. 333, 334 or permission of the instructor.)

E.E. 324 1 Credit Spring
Electrical Engineering Lab II (0+3)
Laboratory experiments in transmission lines, impedances, bridges, scattering parameters, hybrids, waveguides, cavities, periodic circuits, waveguide obstacles, isolators, multi-port junctions, antennas, lasers, bulk-effect microwave generators. (Corequisites: Phys. 331 or equivalent.)

E.E. 332 3 Credits Spring
Electromagnetic Waves and Antennas (3+0)
Use of Maxwell's equations in the analysis of waveguides, cavity resonators, and transmission lines; retarded potentials; antennas for radio and microwave frequencies. (Prerequisites: Math. 302, Physics 331.)

E.E. 333 3 Credits Fall
Physical Electronics (3+0)
Basic properties of semiconductors; p-n junctions and transistors. (Prerequisite: E.E. 204.)

E.E. 334 3 Credits Spring
Electronic Circuit Design (3+0)
Analysis of the common circuits used in computation, control, and communications; stability considerations; worst case design of functional units. (Prerequisite: E.E. 333.)

E.E. 353 3 Credits Fall
Transient analysis by Laplace transform, state variable, and Fourier methods; filter networks, computer aided analysis. (Prerequisite: E.E. 204.)

E.E. 354 3 Credits Spring
Circuit Theory II (3+0)
State variable methods, advanced network analysis and synthesis, filter networks. (Prerequisite: E.E. 353.)

E.E. 403 4 Credits Fall
Electrical Power Engineering (3+3)
Characteristics and applications of electric motors, generators and transformers; multiphase circuit applications, transients, fault currents, and system stability; power systems. (Prerequisites: E.E. 204.)

E.E. 404 4 Credits Spring
Electrical Power Engineering II (3+3)
Topics in generation, power system operation and management, and distribution which include selection of energy source, plant layout and construction, rate structures, customer relations, and power regulation and relaying. (Prerequisite: E.E. 403.)

E.E. 431 1 Credit Fall
High Frequency Lab I (0+3)
E.E. 432 1 Credit Spring
High Frequency Lab II (0+3)

E.E. 442 4 Credits Fall
Digital Computers (4+0)
Design functioning of digital systems; computer organization, computer arithmetic, combinational and sequential circuits, methods of control, electronic circuitry. (Prerequisite: junior standing in electrical engineering, mathematics or physics, or permission of the instructor.)

E.E. 482 4 Credits Fall
Communication Systems (3+3)
Theory and practice of communication systems; introduction to information theory; system design and laboratory experience in analogs and digital communication. (Prerequisite: credit or registration in E.E. 353.)

E.E. 471 4 Credits Fall
Fundamentals of Automatic Control I (4+0)
Linear system representation by transfer functions and state variables. The concept of feedback. Time and frequency response of linear systems. Identification. Controllability and observability. Stability by Routh-Hurwitz criterion and frequency plane methods. Specifications of higher order linear systems. System design and compensation. (Prerequisites: E.E. 353 or permission of the instructor.)

E.E. 472 4 Credits Spring
Fundamentals of Automatic Control II (4+0)
Discrete state variable methods. The Z-transform and its application to sampled-data control systems. Stability and response. Compensation. Control by digital computer. Elements of stochastic control systems, estimation and filtering. Elements of nonlinear control, including stability by Liapunov's method. Elements of optimal control, including Pontryagin's principle. (Prerequisites: E.E. 471 or permission of the instructor.)
E.E. 474 3 Credits Fall
Instrumentation and Measurement (3+0)
Instrumentation theory and concepts; devices, transducers; data sensing, transmission, recording, display, instrumentation systems; remote sensing; hostile environmental conditions. (Prerequisites: E.S. 207, E.S. 308, or permission of the instructor.)

E.E. 481 3 Credits Fall
Electronics and Instrumentation for Scientists and Engineers I (2+3)
Theory and design of solid state electronic circuitry for practicing engineers and scientists in the physical and life sciences. Diodes, transistors, field effect transistors, integrated circuits and other solid state devices. Analysis of modern electronic systems. (Prerequisites: 1 year of college physics; mathematics through calculus.)

E.E. 482 3 Credits Spring
Electronics and Instrumentation for Scientists and Engineers II (2+3)
Instrumentation theory and concepts; transducers; data transmission, recording and reducing. Digital electronics. Electrical measurement of physical variables and error analysis. (Prerequisite: E.E. 481 or equivalent.)

E.E. 491 1 Credit Fall
E.E. 492 1 Credit Spring
Seminar (1+0)
Current topics. Senior students will have an opportunity to present papers.

E.E. 493 Credits Arr. Fall
E.E. 494 Credits Arr. Spring
Special Topics
Various subjects studied.

E.E. 603 3 Credits Fall
Advanced Electric Power Engineering (3+0)
Selected advanced topics in electric power generation, transmission, utilization, optimization, stability, and economics. (Prerequisite: E.E. 403 and E.E. 404 or equivalent, or permission of instructor.)

E.E. 604 3 Credits Spring
Nuclear Power Generation (3+0)
Fundamentals of nuclear reactors, nuclear electric generators, performance characteristics, control, instrumentation, and economics. (Prerequisite: E.E. 403 and 404 or equivalent, or permission of the instructor. Offered as demand warrants.)

E.E. 631 3 Credits Fall
Quantum Electronics (3+0)
Applied quantum mechanics; stimulated emission; conditions for oscillation and amplification. Applications to microwave and optical gas and solid state masers. Theory and properties of molecular and semiconductor masers, nonlinear and multiple-photon processes, and optical resonators. (Co-requisite: Phys. 651 or permission of instructor.)

E.E. 632 3 Credits Spring
High Frequency Devices (3+0)
Principles of operation of microwave tubes, microwave semiconductor devices, parametric amplifiers, nonlinear elements, ferromagnetics. (Prerequisite: E.E. 332.)

E.E. 635 3 Credits Fall
Advanced Electronic Circuit Design (3+0)
Low noise level design; networks for extraction of signals from noise; environmental design; signal conditioning networks. (Prerequisite: E.E. 334 or permission of the instructor.)

E.E. 651 4 Credits Fall
Stochastic Control Systems (4+0)
Performance measure and minimization techniques; continuous and discrete random processes in control systems. Optimal design of systems having stochastic signals and noise. Application of the Wiener-Hopf method to control systems design. Kalman-Bucy filtering methods in the continuous and discrete domain. (Prerequisites: Math. 471, E.E. 472 or permission.)

E.E. 652 4 Credits Spring
Optimal Control (4+0)
Calculus of variations applied to optimal control. The Pontryagin maximum principle, Bellman's principle of optimality. Dynamic programming and the matrix Riccati equation. Optimization under constraints. Minimum-time control. The optimal regulator problem. Elements of optimum-switched systems. (Prerequisites: E.E. 472 or permission.)

E.E. 662 3 Credits Spring
Communication Theory (3+0)
Generalized harmonic analysis, probability in communication systems, random variables, power spectral density, characterization of signals, sampling theory, detection, optimum filtering, coded systems, channel models. (Prerequisite: Math. 302.)

E.E. 672 3 Credits Fall
Underwater Acoustics (3+0)
(Same as OCE 672)
Nature of sound, units and standards, sound-related characteristics of sea water, transmission and
Course Descriptions

Transmission losses, effect and discontinuities, reverberation, measurement techniques.

E.E. 674 3 Credits Spring Instrumentation Systems (3+0)
Design of complete engineering and scientific instrumentation systems; test methodology; cost, reliability, and accuracy considerations; environmental hazards; space applications. (Prerequisite: E.E. 474.)

E.E. 676 1 Credit Spring Instrumentation Lab II (0+3)
Building and testing systems designed in E.E. 674. (Fee $20) (Corequisite: E.E. 674.)

E.E. 691 Credits Arr. Fall Seminar
Current topics at an advanced level. Presentation of student papers.

E.E. 692 Credits Arr. Spring Seminar

E.E. 698 Credits Arr. Spring Thesis
Individual study and research.

ELECTRO-MECHANICS TECHNOLOGY

E.M.T. 273 5 Credits Summer-Fall Mechanics I (3+0)
Study of the mechanical elements and mechanical systems used in data processing equipment. The functional principles of the mechanics will be studied. The characteristics of mechanical systems are analyzed and related to application requirements. Mechanics studied include power input, power transmission devices, inductors, calculators, feeders, punches, accumulators, and printers. Emphasis is placed on the maintenance of the above.

E.M.T. 274 4 Credits Summer-Fall Storage Principles (3+6)
Theory and field application of industrial and geophysical electro-mechanical storage devices.

E.M.T. 276 4 Credits Summer-Fall Electro-Mechanical Industrial Control Devices (3+6)
An introduction to the theory and application and transducer sensor devices, continuous - balance strip-chart recorders, magnetic amplifiers, analog computers, synchro-control systems, and gas-tube switching and timing circuits. Introduction to automatic-control principles.

E-M.T. 279 4 Credits Summer-Fall Fluid Power Systems (2+6)
Hydraulics and fluid mechanics with mathematical equations to solve some of the common problems of application.

E.M.T. 285 5 Credits Fall-Spring Mechanics II (3+0)
Continuation of Mechanics I.

E.M.T. 286 3 Credits Fall-Spring Vacuum Technique Processes (2+6)
Vacuum systems maintenance, leak detection, low-pressure measurements of gas flow, special low-pressure techniques and vacuum evaporation systems.

ELECTRONICS TECHNOLOGY

E.T. 151 4 Credits Fall-Spring DC Circuits (5+12)
The first course in electricity for electronics technicians. Basic physics, electrical terms and units, meters and their use, resistance, Ohms' law, simple circuits, magnetic fundamentals, batteries, Kirchhoff's laws, DC circuit analysis, inductance, and capacitance.

E.T. 152 4 Credits Fall-Spring AC Circuits (5+12)
Principles of alternating current, vectors, phase relationships, inductive and capacitative reactance and impedance, AC circuit analysis, series and parallel resonant circuits, transformers, and Thevenin's equivalent circuit.

E.T. 157 3 Credits Fall-Spring Logic Circuits and Boolean Algebra (3+3)
Lecture and laboratory includes studies in digital gates and circuits, number systems, Karnaugh maps, binary arithmetic, truth tables and boolean algebra.

E.T. 159 5 Credits Fall-Spring Mathematics for Electronics (5+3)
Review of arithmetic. Selected topics in algebra, trigonometry, slide-rule computation, graphs, analytical geometry, waveform analysis, decibel calculations, and applications to electronics. (Prerequisite: high school mathematics.)

E.T. 165 3 Credits Spring-Summer Semiconductor Devices and Circuits (2+3)
Basic physics; diodes including special types. The transistor and basic transistor circuits. The S.C.R. and applications. F.E.T.'s and unijunction transistors. (Prerequisite: E.T. 151 and E.T. 152.)
Course Descriptions

E.T. 166 3 Credits Spring-Summer
Electronics Practice (0+12)
Electronic drawings, soldering, electrical connections,
and use of hand tools. Layout and assembly of audio-
frequency equipment, operation of transmitters and
receivers, troubleshooting; practical aspects of
electronics.

E.T. 168 3 Credits Spring-Summer
Basic Circuit Theory (2+6)
Transformer theory. Special purpose vacuum tubes,
including high power types and cathode ray. Filter
circuits, power supplies, waveshaping circuits.
Transmitter and receiver concepts. (Prerequisites: E.T.
151 and E.T. 152.)

E.T. 184 5 Credits Spring-Summer
Digital Computer Theory and Application (3+6)
Theory, organization, functioning and maintenance of
large digital computer systems. (Prerequisites: E.T.
151, E.T. 152 and E.T. 157.)

E.T. 275 3 Credits Summer-Fall
Microwave Electronics (2+3)
Microwave oscillators, transmitters, duplexers,
antennas, amplifiers, mixers, receivers, and
multiplexing. (Prerequisites: E.T. 165 and E.T. 168.)

E.T. 278 4 Credits Summer-Fall
Solid State Electronics (2+6)
Basic solid state theory and application including
laboratory work in the following areas: methods of
circuit analysis, circuit aspects of field effect transistors,
integrated circuits, and silicon controlled rectifiers.
(Prerequisites: E.T. 165, 166 and 168.)

E.T. 281 4 Credits Summer-Fall
Telemetry (2+6)
Telemetry techniques including signal conditioning,
frequency division telemetry, data sampling, pulse
amplitude modulation, pulse duration modulation,
pulse code modulated telemetry, subcarrier
discriminators, PAM/PDM demodulation, and real
time monitoring. (Prerequisites: E.T. 157, 165, 166 and
168.)

E.T. 282 3 Credits Summer-Fall
Communication Circuits (2+3)
Propagation of radio waves; antenna and transmission
lines studies; basic receivers and receiver circuits;
transmitters and transmitter circuits; television
receivers and transmitter circuits. (Prerequisites: E.T.
168.)

E.T. 283 3 Credits Summer-Fall
Waveshaping Circuits (2+3)
Nonsinusoidal waveshapes; waveshaping circuits
including differentiated and integrated voltage
waveshapes. Oscilloscope analysis of waveshape
distortion. Limiters, clampers, and counters. Polyphase
power supplies. (Prerequisites: E.T. 168.)

E.T. 287 4 Credits Fall-Spring
Modern Communication Techniques (2+6)
Preparation for F.C.C. 1st class Radiotelephone
license. Application of state of the art components in
communications. (Prerequisites: E.T. 275 and E.T. 278
or by permission of the instructor.)

E.T. 289 5 Credits Fall-Spring
Solid State Systems Development (3+6)
Small system development, fabrication and operation
utilizing state of the art solid state components.
(Prerequisites: E.T. 166, 278, and 281.)
Course Descriptions

ENGINEERING MANAGEMENT

E.M. 401 Credits Arr. Fall
Construction Cost Estimating and Bid Preparation (3+0)
Compilation and analysis of the many items that influence and contribute to the cost of projects to be constructed. Preparation of cost proposals and study of bidding procedures.

E.M. 450 3 Credits Spring
Fundamentals of engineering economy, project scheduling, estimating, legal principles, professional ethics, and human relations. (Not offered for credit toward the Master of Science in Engineering Management or Science Management. Prerequisites: E.S. 201 and senior standing in engineering or permission of instructor.)

E.M. 605 3 Credits Fall
Advanced Engineering Economics (3+0)
The science of fiscal decision-making. Graduate level studies in problems of replacement, economic selection, income tax accounting, engineering evaluation and introduction to the problems of depreciation.

E.M. 611 3 Credits Fall
Engineering Management (3+0)
Review of accounting principles; industrial accounting including cost accounting; business organization; business finance; emphasis on use of data in management rather than its generation.

E.M. 612 3 Credits Spring
Engineering Management (3+0)
Development of ability to seek out needed information, analyze it, and make recommendations over a wide range of managerial problems involving fiscal matters; cases involving capital acquisitions, profit maximization, methods improvement, pricing, modification of controls, and other management problems. (Prerequisites: E.M. 605, 611.)

E.M. 613 3 Credits Spring
Human element in management; labor relations, human relations, personnel administration, industrial psychology, employee relations, and labor economics from the viewpoint of needs of a manager.

E.M. 621 3 Credits Spring
Operations Research (3+0)
Mathematical techniques for aiding managerial decision-making. Waiting line theory, inventory models, linear programming, transportation problem, dynamic programming, PERT/CPM, machine scheduling, and simulation. Emphasis on application of techniques to actual management situations.

E.M. 623 3 Credits Fall or Spring
Computer Programming for Engineering Managers (3+0)
A course in basic FORTRAN programming, with applications to engineering management problems.

E.M. 684 3 Credits Spring-Fall
Project (3+0)
Individual study of an actual engineering management problem resulting in a report which includes recommendations for action.

E.S. 101 2 Credits Fall
E.S. 102 2 Credits Spring
Graphics (0+8)
Fall semester: orthographic projection, pictorial drawing, sketching, lettering, geometric construction. Spring semester: descriptive geometry; graphic solution of three dimensional problems.

E.S. 111 3 Credits Fall
Engineering Science (1+4)
Engineering problems solving with emphasis on the statics, kinematics, and dynamics of engineering systems. Conservation laws, fluid mechanics, and heat. (Prerequisite: credit or registration in Math. 100)

E.S. 122 3 Credits Spring
Engineering Design (1+6)
Student engineering companies will design useful new devices and in so doing practice the techniques of creative engineering; study of need, design, and testing; cost and market analysis; scheduling, budgeting, and organization; written and oral presentation. (Prerequisite: E.S. 111 or permission of the instructor.)

E.S. 201 3 Credits Fall-Spring
Computer Techniques (2+3)
Basic computer programming, primarily in FORTRAN, with considerable applications from all fields of engineering. (Prerequisite: Math. 106 or enrollment in Math. 200.)
E.S. 208 4 Credits Spring
Mechanics (3+3)
Statics, kinematics, dynamics. Both classical and vector methods are used. Graphical solutions, work and energy, impulse and momentum, virtual work. (Prerequisites: E.S. 111 or Phys. 105 and Math. 201.)

E.S. 301 3 Credits Spring-Fall
Engineering Analysis (3+0)
Application of mathematical tools to the engineering with emphasis on the mathematical formation of typical engineering problems. Selected topics from all fields of engineering. (Prerequisite: Math. 302.)

E.S. 307 4 Credits Fall
Elements of Electrical Engineering (3+3)
Electrical fundamentals; elementary circuits and theorems; natural, forced and steady state response; principles of electronics; circuit models and system parameters; characteristics of AC and DC machines. (Prerequisite: Math. 202, or permission of the instructor.)

E.S. 308 3 Credits Spring
Instrumentation and Measurement (2+3)
Instrumentation theory and concepts digital and analog devices; transducers, data sensing transmission; recording, and display; instrumentation system; remote sensing; hostile environmental conditions. (Prerequisite: E.S. 307.)

E.S. 331 3 Credits Fall
Mechanics of Materials (2+3)
Stress-strain relationships, shear and moment diagrams, design of beams, columns, rivet, bolt, and weld connections, indeterminate beams. (Prerequisites: E.S. 208, Math. 201.)

E.S. 341 4 Credits Fall
Fluid Mechanics (3+3)
Statics and dynamics of fluids. Basic equations of hydrodynamics, dimensional analysis, simple hydraulic machinery. (Prerequisites: E.S. 208, Math. 201.)

E.S. 346 3 Credits Spring
Basic Thermodynamics (3+0)
Systems, properties, processes, and cycles. Fundamental principles of thermodynamics (first and second laws), elementary applications. (Prerequisites: Math. 202, Phys. 212.)

E.S. 491 Credits Arr. Fall-Spring
E.S. 492 Credits Arr. Fall-Spring
Engineering Seminar
Oral and written exposition on current engineering topics.

ENGLISH

Engl. 57 3 Credits Fall
Engl. 58 3 Credits Spring
English as a Second Language (0+6-9)
Individual and group tutoring in oral and written English for foreign students and others with special language problems. May be taken for a total of 6 credits.

Engl. 67 3 Credits Fall
Engl. 68 3 Credits Spring
Elementary Exposition (3+0)
Training in oral and written communication.

Engl. 100 3 Credits Fall-Spring
Elementary English (3+0)
For students inadequately prepared for Engl. 111. Intensive practice in written comprehension. Frequent writing assignments. Not to be substituted for required courses.

Engl. 103 3 Credits Fall-Spring
Intensive Developmental English (5+0)
An approach to problems of communication in English with special sensitivity to difference in culture and language and stylistic features which characterize informal, formal, spoken and written usage. The balance among listening, speaking, writing, and reading will be determined by the needs of the class.

Engl. 104 3 Credits Fall-Spring
Intensive Developmental English (3+0)
Concept similar to Engl. 103, except that all material used will be correlated with a specified course in which the student is concurrently enrolled, and work will be focused on language problems peculiar to that course. May be taken a second time for credit when the correlated course is different.

Engl. 105 3 Credits Fall-Spring
Intensive Developmental Reading (5+0)
Intensive instruction in reading designed to encourage wide reading and vocabulary improvement and to develop the reading skills necessary for successful competition in college courses. Emphasis will be on the kinds of materials encountered by freshmen. Reading clinic help will be available, utilizing various commercial materials and mechanical devices.

Engl. 106 3 Credits Fall-Spring
Intensive Developmental Writing (5+0)
A writing program emphasizing the differences between speech and writing, narrative and factual reporting, with particular emphasis on the use of connectors and other organizational devices used in the various kinds of writing done in college.
Course Descriptions

Engl. 111 3 Credits Fall-Spring
Methods of Written Communication (3+0)
Intensive instruction in written expression, including orderly thought, clear expression, and close analysis of appropriate texts.

Engl. 131 3 Credits Fall-Spring
Introduction to Literature (3+0)
A basic introduction to fiction, drama, verse; to the terminology of literary study; and to the analysis and appreciation of literature.

Engl. 201 3 Credits Fall-Spring
Engl. 202 3 Credits Fall-Spring
Masterpieces of World Literature (3+0)
A survey of British Literature from its beginnings to the present. (Prerequisite: Engl. 111.)

Engl. 203 3 Credits Fall
Engl. 204 3 Credits Spring
Survey of British Literature (3+0)
A survey of British Literature from its beginnings to the present. (Prerequisite: Engl. 111.)

Engl. 211 3 Credits Fall-Spring
Advanced Composition, with Modes of Literature (3+0)
Intensive written expression and close analysis of selected readings in methods and modes of literature. Special attention to literary techniques. Students write for weekly conferences. Introduction to research techniques. (Prerequisite: Engl. 111.)

Engl. 213 3 Credits Fall-Spring
Advanced Exposition (3+0)
Intensive written expression through selected readings in appropriate fields of social and natural sciences. Students write for individual conferences. Introduction to research techniques. (Prerequisite: Engl. 111.)

NOTE: Neither English 211 nor English 213 is to be considered or is to be used as a prerequisite for any other course or for any particular course of study. Because both of these courses will be primarily courses in writing, either one of them will fulfill the second half of the requirement in written communication for the baccalaureate degree. A student who has taken one of these courses before declaring a major in which the other course may be considered more appropriate, or a student who changes his major from a field in which one of these courses is considered more appropriate than the other, will not be required to take the other course.

Engl. 220 3 Credits Spring
The Bible as Literature (3+0)
A study of the form, content, and criticism of the Bible in translation. (Prerequisite: Engl. 111.)

Engl. 349 3 Credits Fall-Spring
ATECTED, Eskimo and Indian Literature of Alaska in English Translation (3+0)
Collecting, translating (where necessary), classifying, analyzing, and appreciating oral and written legends, myths, songs, and other materials in a workshop situation. (Prerequisite: Some familiarity with Aleut, Eskimo, or Indian literature of Alaska and permission of the instructor.)

Engl. 254 4 Credits Fall
Canadian History & Literature to 1867 (4+0)
(As Hist. 254)
History and literature of Canada to 1867 taught jointly by staff members from the Departments of History and English.

Engl. 255 4 Credits Spring
Canadian History and Literature: 1867 to the Present (4+0)
(As Hist. 255)
History and literature of Canada from 1867 to the present taught jointly by staff members from the Departments of History and English.

NOTE: Except where otherwise indicated, prerequisites for 300 and 400 level courses are Engl. 201 and 202 or permission of the instructor.

Engl. 314 3 Credits Fall-Spring
Research Writing (3+0)
Technical, specialized exposition, documentation and research. Concentration on language, style and audience in scholarly articles. Papers in students' fields prepared for conference. Students should have a definite project in mind before enrolling. (Prerequisite: permission of the instructor.)

Engl. 318 3 Credits Fall
Modern English Grammar (3+0)
Study of the structure of current English as seen through recent linguistic theory and the investigation of such related topics as regional and social dialects, functional varieties, usage, and dictionaries. Recommended for all students majoring in linguistics or in elementary education and for all students with a teaching major or minor in English.

Engl. 321 3 Credits Fall
The Renaissance (3+0)
Poetry and prose of the sixteenth century. (Offered as demand warrants.)

Engl. 322 3 Credits Spring
Neoclassical Age (3+0)
Poetry and prose from John Dryden through Samuel Johnson. (Offered as demand warrants.)
Course Descriptions

Engl. 323 3 Credits Fall
Romantic Period (3+0)
Poetry and prose from the late 1700's to 1830. (Offered as demand warrants.)

Engl. 324 3 Credits Spring
Victorian Period (3+0)
Poetry and non-fictional prose, 1830-1902. (Offered as demand warrants.)

Engl. 327 3 Credits Fall
Colonial American Writing (3+0)
A survey of American Literary productions — history, sermons, theology, journals, diaries, autobiography, poetry, fiction, and drama — from the earliest days of colonization to ca. 1800.

Engl. 328 3 Credits Spring
19th-Century American Prose and Poetry (3+0)
A survey of American literature and related criticism from Bryant and Poe through Robinson and James, including some major novels.

Engl. 336 3 Credits Fall-Spring
20th-Century American Prose (3+0)
The major fiction of Lewis, Fitzgerald, Hemingway, Faulkner, and Steinbeck. (Offered as demand warrants.)

Engl. 337 3 Credits Fall
20th-Century American Poetry (3+0)
The poetry of Whitman, Dickinson, Robinson, Frost, Stevens, Roethke, and others. (Offered as demand warrants.)

Engl. 338 3 Credits Fall
20th-Century British Literature (3+0)
Major achievements of modern British poetry and prose. (Offered as demand warrants.)

Engl. 341 3 Credits Fall
Creative Writers Workshop (3+0)
Writing fiction, drama, and poetry. Critique of student productions.

Engl. 342 3 Credits Spring
20th-Century Drama (3+0)
From Chekhov to Ionesco, the major dramatists and their achievements. (Offered as demand warrants.)

Engl. 352 3 Credits Spring
The British Novel to 1900 (3+0)
Origin and development of the novel with concentration on Richardson, Fielding, Austen, E. Bronte, Dicken, Conrad, and Hardy. (Offered as demand warrants.)

Engl. 381 3 Credits Fall
Craft of Poetry (3+0)
An intensive study of the forms and techniques used by poets.

Engl. 382 3 Credits Spring
Craft of Fiction (3+0)
An intensive study of the forms and techniques used by prose writers.

Engl. 383 3 Credits Fall-Spring
Craft of Drama (3+0)
An intensive study of the forms and techniques used by dramatists. A close analysis of criticism from Aristotle to Bertolt Brecht.

Engl. 413 3 Credits Spring
Middle English Literature (3+0)
Representative Middle English texts exclusive of Chaucer. (Offered as demand warrants.)

Engl. 421 3 Credits Fall
Chaucer
Chaucer's poetry, with emphasis on The Canterbury Tales.

Engl. 423 3 Credits Fall
Elizabethan and Jacobean Drama (3+0)
Major plays of Elizabethan and Jacobean dramatists. (Offered as demand warrants.)

Engl. 424 3 Credits Fall-Spring
Shakespeare (3+0)
Major works, emphasis on the later plays and review of Shakespearean criticism.

Engl. 426 3 Credits Spring
Milton (3+0)
The poetry, selected prose, and survey of the criticism of Milton.

Engl. 431 1-3 Credits Fall
Creative Writers Workshop (3+0)
Writing fiction, drama, and poetry. Critique of student productions.

Engl. 441 3 Credits Fall
Greek Literature (3+0)
Greek literature in English translation.

Engl. 442 3 Credits Spring
Roman Literature (3+0)
Roman literature in English translation.

Engl. 444 3 Credits Fall-Spring
European Literature (3+0)
Studies in major European writers and periods. (Offered as demand warrants.)

Engl. 462 3 Credits Spring
Applied English Linguistics (3+0)
Study of the linguistic basis for such practical language
Course Descriptions

activities as teaching reading and spelling, teaching English as a second language or standard English as a second dialect, teaching composition, and literary criticism. After an initial interview, students will investigate a specific area of application. (Engl. 318 or a linguistics course is desirable, but not required.)

Engl. 472 3 Credits Spring
History of the English Language (3+0)
Origin and development of the English language from prehistoric times to the present. (Engl. 318 or a linguistics course is desirable but not required.)

Engl. 493 3 Credits Fall
Engl. 494 3 Credits Spring
Special Topics (3+0)
Various subjects in American, British, and comparative literature.

Engl. 600 3 Credits Fall
Introduction to Graduate Studies in English (3+0)
A survey of theories of literature, bibliographical studies, and methods of teaching English in the college or university. Required of all entering graduate students in English.

Engl. 605 3 Credits Fall
Studies in Drama (3+0)
Engl. 610 3 Credits Spring
Studies in Fiction (3+0)
Engl. 615 3 Credits Fall
Studies in Poetry (3+0)
Engl. 620 3 Credits Spring
Studies in Criticism (3+0)
Engl. 624 3 Credits Spring
Studies in Old English (3+0)
Engl. 630 3 Credits Spring
Studies in Literature of the English Renaissance (3+0)
Engl. 635 3 Credits Fall
Studies in 17th-Century English Literature (3+0)
Engl. 640 3 Credits Spring
Studies in 18th-Century English Literature (3+0)
Engl. 645 3 Credits Fall
Studies in the Literature of the British Romantic Period (3+0)

Engl. 650 3 Credits Spring
Studies in the Literature of the Victorian Period (3+0)
Engl. 655 3 Credits Fall
Studies in 20th-Century British Literature (3+0)
Engl. 661 3 Credits Fall
Studies in 19th-Century American Literature (3+0)
Engl. 666 3 Credits Spring
Studies in 20th-Century American Literature (3+0)
Engl. 670 3 Credits Spring
Studies in Comparative Literature (3+0)

Engl. 683 3 Credits Fall
Directed Reading (3+0)
Intensive reading for the M.F.A. candidate.

Engl. 691 Credits Arr. Fall
Engl. 692 Credits Arr. Spring
Seminar
Various topics. (Admission by arrangement.)

Engl. 693 Credits Arr. Fall
Engl. 694 Credits Arr. Spring
Special Topics
Engl. 695 Credits Arr. Fall
Engl. 696 Credits Arr. Spring
Research
Engl. 697 Credits Arr. Fall
Engl. 698 Credits Arr. Spring
Thesis

WRITERS WORKSHOP

Engl. 675 Credits Arr. Fall-Spring
Writing Drama
Engl. 681 Credits Arr. Fall-Spring
Writing Fiction
Engl. 685 Credits Arr. Fall-Spring
Writing Verse

ENVIRONMENTAL HEALTH ENGINEERING

E.H.E. 401 4 Credits Fall
Environmental Health Engineering Measurements (2+4)
Theory and laboratory procedures for determining
quality of water supplies, natural water quality, pollution loads, and water and waste water treatment plant parameters. Experiments on unit processes of treatment systems are included. (Prerequisite: C.E. 441 or graduate standing.)

E.H.E. 402 3 Credits Spring Engineering Management of Water Quality
(3+0)
Concepts, rationale, theory, institutions, and engineering aspects of water quality management; methods of water quality management; low-flow augmentation; instream aeration. (Prerequisite: C.E. 441 or permission of instructor.)

E.H.E. 601 2 Credits Spring Water Quality Control (2+0)
Stream and estuarine analysis, ocean disposal systems, diffuser analysis and design; control of thermal effluents and low flow augmentation. (Prerequisites: Biol. 343, E.H.E. 606.)

E.H.E. 602 2 Credits Fall Solid Waste Management (2+0)
Planning, collecting, and disposing of refuse. Common disposal techniques of open dumping, landfilling, sanitary landfilling, composting, and incineration. Emphasis is placed on the effect of solid waste on the environment and its relationship to water, air and land pollution. Economics and case studies are included. (Prerequisite: E.H.E. 401 or permission of instructor.)

E.H.E. 603 2 Credits Spring Air Pollution (2+0)
Quantity and quality of atmospheric emissions and their effects on man and his environment. Identification and location of sources, measurement of the quality and quantity, control and regulation, economics, and standards. (Prerequisite: E.H.E. 401 or permission of instructor.)

E.H.E. 605 4 Credits Fall Chemical and Physical Water and Wastewater Treatment Processes (4+0)
The theory and design of chemical and physical unit processes utilized in the treatment of water and wastewater. Sedimentation, flotation, ion exchange, coagulation, precipitation, filtration, disinfection, reverse osmosis, and aeration theories will be studied. Design problems for all unit processes.

E.H.E. 606 4 Credits Spring Biological Treatment Processes (4+0)
Study of the theoretical aspects of wastewater treatment by biological processes including activated sludge, trickling filters, sludge digestion and sludge processing. Analysis and design of biological treatment facilities. Nutrient removal process. (Prerequisite: E.H.E. 605.)

Course Descriptions

E.H.E. 691 Credits Arr. Fall
E.H.E. 692 Credits Arr. Spring
E.H.E. 693 Credits Arr. Fall
E.H.E. 694 Credits Arr. Spring
E.H.E. 697 Credits Arr. Fall
E.H.E. 698 Credits Arr. Spring

ESKIMO

Esk. 101 5 Credits Fall
Esk. 102 5 Credits Spring
 Elementary Yupik Eskimo (5+0)
 Introduction to Central Yupik, the language of the Yukon and Kuskokwim deltas and Bristol Bay. Open to both speakers and nonspeakers. For speakers the course provides literacy and grammatical analysis. For others it provides a framework for learning to speak, read, and write the language. Consideration given to dialect differences.

Esk. 108 3 Credits Spring
 Yupik Literacy (3+0)
 Literacy training for speakers of Central Yupik. Learning to read and write the language.

Esk. 111 5 Credits Fall
Esk. 112 5 Credits Spring
 Elementary Inupiaq Eskimo (5+0)
 Introduction to Inupiaq, the language of Unalakleet, Seward Peninsula, Kotzebue Sound, and North Slope. Open to both speakers and nonspeakers. For speakers the course provides literacy and grammatical analysis. For others it provides a framework for learning to speak, read, and write the language. Consideration given to dialect differences.

Esk. 118 3 Credits Spring
 Inupiaq Literacy (3+0)
 Literacy training for speakers of Alaskan Inupiaq. Learning to read and write the language.

Esk. 201 3 or 4 Credits Fall
Esk. 202 3 or 4 Credits Spring
 Intermediate Eskimo (3+0) or (4+0)
 Continuation of Eskimo 101-102. Increasing emphasis on speaking, reading and writing.

Esk. 415 3 Credits Fall
 Advanced Yupik Eskimo (3+0)
Course Descriptions

Esk. 417 3 Credits Spring Advanced Inupiaq Eskimo (3+0)
Advanced study in Inupiaq Eskimo. A continuation of Esk. 112.

Esk. 403 Credits Arr. Fall Special Topics
Esk. 404 Credits Arr. Spring
Directed study in Central Yupik, Alaskan Inupiaq, or other Eskimo, including St. Lawrence Island or Pacific Gulf Eskimo.

Esk. 693 Credits Arr. Fall Special Topics
Esk. 694 Credits Arr. Spring
Directed advanced study in Central Yupik, Alaskan Inupiaq, or other Eskimo, including St. Lawrence Island or Pacific Gulf Eskimo.

FOREIGN LANGUAGES

For. Lang. 110 2 Credits Spring How to Pronounce French, German, Italian, and Spanish (3+0)
Designed to meet the needs of students and others in radio, television, journalism, drama, music (esp. voice), etc. who want to pronounce French, German, Italian, and Spanish correctly and with confidence. The method is practical and direct. Concrete examples are used. (No prerequisites.)

For. Lang. 393 Credits Arr. Fall Various topics studied.
For. Lang. 394 Credits Arr. Spring

FRENCH

Fren. 101 5 Credits Fall Elementary French (5+0)
Development of the four skills (listening comprehension, speaking, reading, and writing) with emphasis on oral work, practice in the language laboratory, basic grammar, and vocabulary.

Fren. 102 5 Credits Spring

Fren. 111 3 Credits Fall French for Reading Ability (3+0)
Rapid acquisition of reading knowledge with attention to needs in specialized fields. Credit applicable to degrees requiring one year of a foreign language with emphasis on reading skill. (Offered as demand warrants.)

Fren. 201 4 Credits Fall Intermediate French (4+0)
Continuation of Fren. 102. Increasing emphasis on reading ability and cultural material. Conducted in French. (Prerequisite: Fren. 102 or two years of high school French.)

Fren. 301 3 Credits Fall Advanced French (3+0)
Discussions and essays on more difficult subjects or texts; translations, stylistic exercises, special grammatical problems, systematic vocabulary building. Conducted in French. (Prerequisite: Fren. 202 or equivalent. Next offered 1975-76.)

Fren. 313 3 Credits Fall Advanced French (3+0)
History and development of the arts and of national institutions; extensive reading and classroom discussion. Conducted in French. (Prerequisite: Fren. 202. Next offered 1973-74.)

Fren. 323 3 Credits Fall Survey of French Literature (3+0)
Reading of texts representative of literary currents, genres, authors, epochs. Conducted in French. (Prerequisite: Fren. 202. Concurrent or previous enrollment in Fren. 301 or 302 recommended. Next offered 1974-75.)

Fren. 404 3 Credits Spring Advanced Syntax and Oral Expression (3+0)
Continuation of Fren. 301 or 302. Analysis of difficult aspects of syntax and phonetics and practice in speaking and writing. Conducted in French. (Next offered 1973-74.)

Fren. 439 3 Credits Fall Literature of the Classical Age (3+0)
Close study of outstanding literary works of different genres. Conducted in French. (Next offered 1974-75.)

Fren. 443 3 Credits Fall 19th Century French Literature (3+0)
French literature in the 19th century; romantisme - Realisme - naturalisme ideallisme - fin de siecle. Conducted in French. (Next offered 1975-76.)

Fren. 452 3 Credits Spring The French Novel of the 20th Century (3+0)
Representative novelists and their works. Conducted in French. (Next offered 1975-76.)

Fren. 467 3 Credits Fall Contemporary French Theatre (3+0)
Analysis of important plays, study of themes and dramatic techniques. Conducted in French. (Next offered 1973-74.)
Fren. 472 3 Credits Spring
French Poetry (3+0)
French poetry from the Middle Ages to the 20th century. Course conducted in French. (Next offered 1974-75.)

Fren. 493 Credits Arr. Fall
Fren. 494 Credits Arr. Spring
Special Topics
Various subjects for advanced students. (Admission by arrangement. Offered as demand warrants.)

Fren. 608 3 Credits Spring
History of the French Language (3+0)
Study of the historical evolution of French, supplemented by an analysis of documentary texts from the main literary periods. Conducted in French. (Offered as demand warrants.)

Fren. 635 3 Credits Fall
The Renaissance (3+0)
Analysis of outstanding literary works and, in general, of texts representative of the main literary forces prevalent during the 16th century. Conducted in French. (Offered as demand warrants.)

Fren. 641 3 Credits Fall
The Age of Enlightenment (3+0)
A critical study of a variety of texts, philosophical as well as literary. Conducted in French. (Offered as demand warrants.)

Fren. 648 3 Credits Spring
The 19th Century Novel (3+0)
Analysis of novels ranging from romanticism to naturalism. Conducted in French. (Offered as demand warrants.)

Fren. 691 Credits Arr. Fall
Fren. 692 Credits Arr. Spring
Seminar
Various topics. (Offered as demand warrants.)

Fren. 693 Credits Arr. Fall
Fren. 694 Credits Arr. Spring
Special Topics
Various topics. (Offered as demand warrants.)

Fren. 695 Credits Arr. Fall
Fren. 696 Credits Arr. Spring
Research
(Offered as demand warrants.)

Fren. 697 Credits Arr. Fall
Fren. 698 Credits Arr. Spring
Thesis
(Offered as demand warrants.)

Course Descriptions

GEOGRAPHY

Note: Geography 105, 209, 316 and 401 are Science courses; all others are Social Science courses.

Geog. 101 3 Credits Fall
Introductory Geography (3+0)
World regions; an analysis of environment, with emphasis on the major culture realms.

Geog. 103 3 Credits Fall-Spring
World Economic Geography (3+0)
Study of the world's major economic activities: their physical and cultural bases, spatial growth and distribution patterns, and their significance in inter-regional and international development.

Geog. 105 3 or 4 Credits Spring
Elements of Physical Geography (3+0 or 3+3)
Description and analysis of physical environment including climate, landforms, soils, water, vegetation and their world patterns. Optional laboratory for one additional credit includes exercises related to each major unit of the course.

Geog. 202 3 Credits Spring
Geography of United States and Canada (3+0)
Regional geography of Anglo-America. Introductory systematic study of the area as a whole, followed by detailed study of the physical and cultural landscape forms, patterns, and associations of each major region in turn. Consideration of the significance of Anglo-America in current world economic and political geography.

Geog. 209 3 Credits Fall
Fundamentals of Meteorology (3+0)
(Same as Phys. 209)
An introductory course in meteorology for the non-specialist. Aviation weather will be included. (Prerequisite: High school algebra or permission of the instructor.)

Geog. 301 3 Credits Spring
Geographic Field Research Techniques
Theory and application of geographic methods of conducting field investigations. Collection, analysis, synthesis and interpretation of data concerning the natural and man-made features of regional environments. Preparation and presentation of reports of findings and conclusions.

Geog. 302 3 Credits Spring
Geography of Alaska (3+0)
Regional, physical and economic geography of Alaska. Special consideration of the state's renewable and nonrenewable resources, and of plans for their wise use. Frequent class study of representative maps and other audio-visual materials.
Course Descriptions

Geog. 305 3 Credits Fall
Geography of Europe (except U.S.S.R.) (3+0)
Regional, physical, economic and cultural geography of Europe, except U.S.S.R. (Prerequisite: An introductory geography course or permission of the instructor.)

Geog. 306 3 Credits Spring
Geography of the Soviet Union (3+0)
The physical, cultural and historical geography of the U.S.S.R. with special emphasis on the geographic bases of the expansion of the Great Russians and the contemporary foundation of Soviet national power. (Prerequisite: Geog. 101 or 103 or 105 or permission of the instructor.)

Geog. 309 3 Credits Fall-Spring
Cartography (1+6)
Graphic techniques for presenting geographic data through the construction of maps, projections and charts. (Admission by arrangement.)

Geog. 311 3 Credits Fall-Spring
Geography of Asia (3+0)
Regional geography of Asia, exclusive of the Soviet Union. A study of the physical framework, natural resources, peoples, major economic activities and characteristic landscapes of the major regions of Japan, China, Southeast Asia, India-Pakistan and the Asiatic countries of the Middle East. (Prerequisite: Geog. 101 or 103 or 105 or permission of the instructor.)

Geog. 315 3 Credits Fall
Geography of Africa (3+0)
Physical and cultural geography of Africa, by regions. Significance of Africa in current world cultural, economic and political geography. Major emphasis on regions south of the Sahara.

Geog. 316 3 Credits Spring
Pleistocene Environment (3+0)
Principles of Paleogeography and their application to the environments of the ice age and post-glacial times. (Prerequisite: Geog. 105 or permission of the instructor.)

Geog. 327 3 Credits Fall
Cold Lands (3+0)
The comparative physical, human and economic geography of cold regions, with particular attention to Siberia, Greenland, Scandinavia and Canada. Special attention is given to the different approaches which have been taken toward economic development in cold regions. (Prerequisite: Geog. 101 or 103 or 105 or permission of the instructor.)

Geog. 401 3 Credits Fall-Spring
Weather and Climate (3+0)
Introduction to the study of weather and classification of climates. (Prerequisite: Permission of the instructor.)

Geog. 402 3 Credits Spring
Man and Nature (3+0)
The relationship of man with the land he occupies; study of the physical environment and human occupation of the world's major regions; consideration of the significance of cultural diversity, differing patterns of livelihood, settlement and population change.

Geog. 404 3 Credits Fall
Urban Geography (3+0)
A world survey of urbanization with particular emphasis on the accelerating urban revolution in modern times. Conditions favoring the rise of cities: locational and site factors; regional and interregional resource availability; human factors. Changing functions and patterns of urban areas. National and international problems inherent in trends toward a predominantly urbanized economy and culture. Implications of urbanization in Alaska.

Geog. 405 3 Credits Fall
Political Geography (3+0)
Geographical analysis of the evolution, structure, internal coherence, and sources of strength of individual nation states, with emphasis on nations of the Pacific realm and Arctic periphery. Consideration of regional blocs, spheres of influence, and potentialities for international cooperation.

Geog. 408 3 Credits Spring
Quantitative Research Techniques (2+3)
Philosophy and methodology in geography. Theories, laws and models for measurement, analysis and explanation of geographic patterns and associations. Applications of findings to solution of geographic problems. (Prerequisites: Junior standing and college level mathematics, or permission of the instructor.)

Geog. 491 Credits Arr. Fall
Geog. 492 Credits Arr. Spring
Seminar
Selected topics in geography. (Admission by arrangement.)

Geog. 493 Credits Arr. Fall
Geog. 494 Credits Arr. Spring
Special Topics
Various subjects studied. (Admission by arrangement.)

Geog. 691 Credits Arr. Fall
Geog. 692 Credits Arr. Spring
Seminar
Selected topics in geography. (Admission by arrangement.)
Course Descriptions

Geog. 698
GEOLOGY activities on earth. Particular emphasis on Alaska's and within it. Optional laboratory training

Geo]. 102
Geol. 101

The role of Earth history as a perspective for man's modern environment. Relation of earth resources and geologic hazards to human ecology. Geologic consequences of man's activities on earth. Particular emphasis on Alaska's geologic history, its physical setting and environmental problems, and its potential for future development.

Geol. 104
To be Arranged

A non-laboratory introduction to physical and historical geology: the earth, its origin, processes that affect it, sequence of events in its evolution and succession of life on it; appreciation of the modern landscape. Not acceptable toward a degree in geology or fulfilling a laboratory science requirement.

Geol. 111
An introduction to minerals and rocks, their formation and classification. Surficial and crustal geologic processes and their effects on landforms, rocks and rock structures. Laboratory emphasis on study and classification of mineral and rock hand specimens with an introduction to topographic and geologic map interpretation. Lecture combined with Geology 101, but laboratory separately scheduled. (Prerequisite: science and engineering majors, or permission of instructor.)

Geol. 112
An introduction to geological principles and the development of the geologic time scale, the stratigraphic record and its interpretation, geosynclinal theories and plate tectonics, the fossil record and its utilization, biostratigraphy, and the evolution of the North American continent through geologic time. Laboratory work includes the reconstruction of geologic history of various regions through the use of geologic maps and structure sections and offers an introduction to invertebrate fossils. (Prerequisite: Geol. 101 or 111.)

Geol. 213
Mineralogy (2+6)

Introduction to mineral chemistry, atomic structure, elementary crystallography, and descriptive and determinative mineralogy. Includes introduction to instrumental determinative techniques (x-ray, spectograph), simple qualitative chemical tests. (Prerequisites: Geol. 101 or 111; Chem. 105 or concurrent registration in Math. 106.)

Geol. 214
Geology for Engineers (2+3)

Introduction to applied geology; study of common rocks and minerals, landforms, erosion, transport and deposition of geologic materials, engineering applications of geology.

Geol. 302
Marine Geology (3+0)

Survey of marine geology, including structure and composition of ocean basins and continental margins, chemical and physical properties of marine sediments, geologic processes in the oceans, physical resources, and conservation/pollution concerns. (Prerequisite: Geol. 111, 112 or permission of instructor.)

Geol. 304
Geomorphology (3+0)

Study of landforms and the processes which create and modify them. (Prerequisite: Geol. 102.)

Geol. 314
Structural Geology (2+3)

Origin and interpretation of primary and secondary geologic structures. Graphical solution of structural problems. (Prerequisite: Geol. 112, Geol. 214, Phys. 105 or 211.)

Geol. 315
Optical Mineralogy (2+3)

Theory and application of optical methods as applied
Course Descriptions

to identification of minerals and rocks. Introduction to
the use of the petrographic microscope and
familiarization with the optical characteristics of
common rock forming minerals. (Prerequisites: Geol.
111, 213.)

Geol. 381 3 Credits Fall
Principles of Sedimentation (2+3)
Broad survey of sediments, including origin,
classification, composition, transportation, deposition
and diagenesis. Laboratory instruction in methods of
textural and compositional analysis. (Prerequisite:
Geol. 213 or permission of instructor.)

Geol. 350 2 Credits Spring
Geologic Field Methods (1+3)
An introduction to geologic field techniques as a
prerequisite to Field Geology (Geol. 361). Geologic
field mapping techniques, equipment and logistics, and
the presentation of field data and report preparation.
(Prerequisites: junior standing in geology.)

Geol. 351 6 Credits Summer
Field Geology
Practical experience in the procedures employed in
collecting and presenting the basic data obtained from
the field. Includes field mapping of stratigraphic and
structural problems on topographic maps, aerial
photographs, plane tables maps, and presentation of
results in a professional report and finished geologic
map. Students pay own transportation, subsistence and
course tuition fee. Entrance by preregistration only.
(Prerequisites: junior standing in geology, Geol. 350 or
equivalent, and a course in surveying.)

Geol. 362 3 Credits Fall
Engineering Geology (3+0)
Application of geologic principles to engineering site
exploration, foundation work and structural design.
Rocks and soils; their properties and use as construction
material. Special emphasis on the arctic environment.
(Prerequisites: Geol. 281 and permission of instructor.)

Geol. 401 4 Credits Fall
Invertebrate Paleontology (3+3)
Study of the invertebrate phyla with fossil records.
Emphasis on soft-part anatomy and classification,
followed by study of hard-part anatomy of fossil
groups and their classification. Recurrent emphasis on
relevant biologic principles. Laboratory study on fossil
materials, including a term project on an Alaskan fossil
collection. (Prerequisites: Geol. 101 or 111 or by
permission of instructor; Biol. 305 recommended.)

Geol. 402 3 Credits Spring
Stratigraphic Paleontology (3+0)
An introduction to Physical Stratigraphy, Paleobiology,
and Biostratigraphy. Emphasis on the interpretation of
past environments and correlation through the study of
the sedimentary rock record and fossils. (Prerequisites:
Geol. 112, Geol. 401; Geol. 321 recommended.)

Geol. 403 3 Credits Fall
Environmental Geology (3+0)
Study of the interrelationships between the geologic
environment and the human community. Earth
resources, geologic hazards, land-use planning, waste
disposal, and pollution control. (Prerequisites: Geol.
101 or 111; Geol. 304 recommended.)

Geol. 404 3 Credits Spring
Economic Geology (2+3)
The application of geology to the exploration, valuation
and exploitation of mineral deposits. (Prerequisites:
Geol. 213, 214, 314 or permission of the instructor.)

Geol. 405 3 Credits Spring
Geochronology (3+0)
Study of the radiometric and biological clocks useful in
geologic studies and study of the developing timescale
for earth history. (Prerequisites: Upper-division
standing in geology or geophysics or consent of the
instructor.)

Geol. 407 3 Credits Spring
Principles of Petroleum Geology (3+0)
A comprehensive survey of geologic principles as
applied to the origin, distribution, discovery and
development of petroleum. A standard introductory
course. (Prerequisites: Geol. 214, 314, and 321.)

Geol. 408 3 Credits Spring
Map and Air Photo Interpretation (1+6)
Use of topographic maps, geologic maps, and aerial
photographs in the analysis of geologic structures and
landforms. (Prerequisite: Geol. 304.)

Geol. 411 3 Credits Fall
General Oceanography (3+0)
(Same as OCN 411)
Description of the oceans and ocean processes;
interrelationship of disciplinary sciences to the field;
historical facts of oceanography, modern
developments and trends in the field. (Prerequisite:
senior or graduate standing in a disciplinary science,
mathematics or engineering.)

Geol. 413 3 Credits Fall
Vertebrate Paleontology (2+3)
Systematic study of the fossil vertebrate with emphasis
on evolution, morphology and ecology. (Prerequisite:
Geol. 112.)
<table>
<thead>
<tr>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol. 417 3 Credits Fall</td>
</tr>
<tr>
<td>Introduction to Geochemistry (3+0)</td>
</tr>
<tr>
<td>Introduction to chemistry of the earth. (Prerequisites: Chem. 105, 106.)</td>
</tr>
<tr>
<td>Geol. 418 3 or 4 Credits Spring</td>
</tr>
<tr>
<td>Basic Geophysics (3+0) or (4+0)</td>
</tr>
<tr>
<td>The basic concepts and techniques of geophysics on a global scale. Principles and limitations of seismic, magnetic and gravity observations; other geophysical measurements such as the geothermal gradient, electrical conductivity of the earth, etc. Practical aspects of the measurement and interpretation of geophysical parameters will be included for those taking the course for 4 credits. (Prerequisites: Math. 201, Phys. 106.)</td>
</tr>
<tr>
<td>Geol. 424 3 Credits Spring</td>
</tr>
<tr>
<td>Ground Water Hydrology (3+0)</td>
</tr>
<tr>
<td>Occurrence and distribution of ground water; geologic controls over its quality and amount of yield; methods of exploration and development. (Prerequisites: Geol. 111 or 101 by permission of the instructor, Geol. 314.)</td>
</tr>
<tr>
<td>Geol. 430 2 Credits Spring</td>
</tr>
<tr>
<td>Computer Applications to Geology (1+3)</td>
</tr>
<tr>
<td>An introduction to the use of the computer in geology. Basic Fortran IV programming will be taught as needed, primary emphasis will be placed on the application of computer techniques to geology. The use of the computer in statistical analysis of geologic data and in the modeling of geologic systems will be demonstrated. Numerical and analog solutions to the various models will be studied. (Prerequisites: Senior standing in geology; Math. 201, 203, A.S. 301, or permission of the instructor.)</td>
</tr>
<tr>
<td>Geol. 469 3 Credits Spring</td>
</tr>
<tr>
<td>Glacial and Pleistocene Geology (3+0)</td>
</tr>
<tr>
<td>Study of the geologic effects of glaciation and other environmental modifications resulting from Pleistocene climatic changes. Chronology of the Pleistocene epoch and techniques used in its reconstruction. (Prerequisite: Geol. 304.)</td>
</tr>
<tr>
<td>Geol. 463 3 Credits Spring</td>
</tr>
<tr>
<td>Engineering Geology Case Histories (2+3)</td>
</tr>
<tr>
<td>A continuation of Geol. 362. Application of engineering geology. Geologic problems encountered in various settings presented together with the engineering solutions. Emphasis will be on arctic environment. (Prerequisites: Geol. 362 or permission of instructor.)</td>
</tr>
<tr>
<td>(Same as Min. 470)</td>
</tr>
<tr>
<td>Problem study concerning an environmental project of local interest. (Prerequisite: Junior or senior standing and permission of the instructor.)</td>
</tr>
<tr>
<td>Geol. 606 3 Credits Spring</td>
</tr>
<tr>
<td>Glaciology Seminar (2+3)</td>
</tr>
<tr>
<td>Reading and discussion of selected topics in glaciological literature. Laboratory and field projects may be included. (Prerequisites: Geol. 605 or by arrangement.)</td>
</tr>
<tr>
<td>Geol. 607 3 Credits Fall-Spring</td>
</tr>
<tr>
<td>Paleomagnetism (3+0)</td>
</tr>
<tr>
<td>Description of the geomagnetic field with particular emphasis on paleomagnetism and paleomagnetic techniques. (As demand warrants.)</td>
</tr>
<tr>
<td>Geol. 608 3 Credits Fall</td>
</tr>
<tr>
<td>Pleistocene Environments (3+0)</td>
</tr>
<tr>
<td>Physical and biological aspects of Pleistocene climatic</td>
</tr>
</tbody>
</table>

159
Course Descriptions

Changes and related events. Faculty panel representing geology, geography, biology, and anthropology. (Admission by arrangement. Offered in alternate years.)

Geol. 610 3 Credits Fall
Theories of Ore Deposition (3+0)
Theories pertaining to the origin, concentration, transport, and deposition of ore elements. (Prerequisites: Geol. 404, 410 or permission of the instructor. Offered as demand warrants.)

Geol. 612 3 Credits Fall-Spring
Geology of Alaska (2+3)
Study and interpretation of the geology of Alaska. Field trips. (Prerequisites: Geol. 102, 304, 314. Offered as demand warrants.)

Geol. 613 3 Credits Fall
Advanced Marine Geology and Geophysics (3+0)
(3+0)
A global study of the geology and structure of the ocean floors and continental margins. Geophysical signatures, including heat flow, seismicity, gravity, magnetics, seismic structures, of the major tectonic elements which make up oceanic crustal plates.

Geol. 620 3 Credits As demand warrants
Introduction to Physical Oceanography (3+0)
(Same as OCN 613)
Physical description of the sea, physical properties of sea water, methods and measurements, boundary processes, currents, tides and waves, regional oceanography. (Prerequisite: science or engineering degree, or permission of the instructor.)

Geol. 622 4 Credits Fall
Advanced Metamorphic Petrology (2+6)
(Prerequisites: Geol. 314, 315. Next offered in .)

Geol. 623 4 Credits Fall
Advanced Petrology of the Intrusive Igneous Rocks (2+6)
Geochemistry and petrology of igneous rocks which have crystallized at various depths in the earth's crust or mantle. (Prerequisites: Geol. 315.)

Geol. 624 4 Credits Fall
Advanced Petrology of the Volcanic Rocks (2+6)
(Prerequisites: Geol. 314, 315. Next offered in 1973.)

Geol. 626 3 Credits Spring
Advanced Sedimentary Petrology
Study of the origin of sedimentary rocks as expressed in current technical literature. Accompanied by study of hand specimens and thin sections to provide practical field and laboratory experience in describing and interpreting real rocks.

Geol. 627 4 Credits Fall
Geotectonics (4+0)
Large scale structural features, time and place in orogenesis, theories of orogenesis. (Prerequisite: Geol. 314. Offered as demand warrants.)

Geol. 628 3 Credits Spring
Theoretical Structural Geology (2+3)
Theoretical basis for mechanical behavior of rocks. Includes selected topics, such as mechanisms of folding, development of slaty cleavage and mechanisms of faulting. (Prerequisites: Geol. 314.)

Geol. 629 3 Credits Spring
Crystal Chemistry (3+0)
This course deals with the crystal chemistry of minerals. The course will include: a discussion of chemical bonding in solids, calculation of lattice energies, a systematic discussion of the various crystallo-chemical groups, classification of phase transformation in solids, defect crystals, an introductory treatment of the band theory of solids. (Prerequisites: physical chemistry, Geol. 416 or permission of the instructor. Offered alternate years.)

Geol. 630 2 Credits Spring
Phase Equilibria of Oxide Systems (2+0)
This course will treat the phase equilibria of important unary, binary, ternary and quaternary oxide systems. A portion of the course will be devoted to a discussion of the heterogeneous equilibria of oxide systems under conditions of varying partial pressure of oxygen. The course will conclude with a general treatment of p-t-x systems. (Prerequisites: physical chemistry, Geol. 416 or permission of the instructor. Offered alternate years.)

Geol. 632 3 Credits Spring
Thermodynamics of Geologic Systems (3+0)
Demonstrates the use of thermodynamic calculations based upon experimental data from geologically important systems as a means of interpreting natural mineral assemblages. (Prerequisites: Geol. 416, Chem. 332, or permission of the instructor. Offered alternate years. Next offered 1974.)

Geol. 641 2 Credits Fall-Spring
Advanced Invertebrate Paleontology (2+0)
In-depth study of the anatomy, classification, stratigraphic and geographic distribution, life habits, and environmental significance of selected invertebrate fossil groups.
Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geol. 643</td>
<td>3</td>
<td>Fall</td>
</tr>
<tr>
<td>Advanced Stratigraphy (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigation of various aspects of physical stratigraphy. Emphasis on current stratigraphy problems with classification, nomenclature, correlation, etc., and interpretation of sedimentary rock sequences as records of ancient sedimentary environments. Discussions drawn from current literature.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Geol. 645 | 3 | Fall |
| Advanced Petroleum Geology (3+0) | | |
| Selected topics in petroleum geology and petroleum exploration with emphasis on current problems using current literature. Topics include the origin and migration of petroleum and the geology of subsurface fluids. (Prerequisites: senior or graduate standing in Geology or by permission of instructor. Offered primarily in Anchorage.) |

| Geol. 688 | 1 | Spring |
| Seminar in Arctic and Alpine Geomorphology (1+0) | | |
| Surficial processes and features of high latitude and alpine environments. Emphasis on geologic role of snow, ice, and permafrost in patterned ground formation, slope evolution, and other landscape modifications. Specific applications to land use and development problems will be stressed. |

| Geol. 690 | 0 | Fall-Spring |
| Colloquium | | |

Geol. 691	Credits Arr.	Fall
Geol. 692	Credits Arr.	Spring
Seminar		
Various topics. (Admission by arrangement.)		

Geol. 693	Credits Arr.	Fall
Geol. 694	Credits Arr.	Spring
Special Topics		
Research in various fields.		

Geol. 697	Credits Arr.	Fall
Geol. 698	Credits Arr.	Spring
Thesis or Dissertation		
Transportation expenses met by the student. (Admission by arrangement.)		

GERMAN

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ger. 101</td>
<td>5</td>
<td>Fall</td>
</tr>
<tr>
<td>Ger. 102</td>
<td>5</td>
<td>Spring</td>
</tr>
<tr>
<td>Elementary German (5+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of the four skills (listening comprehension, speaking, reading, and writing) with emphasis on oral work, practice in the language laboratory, basic grammar and vocabulary.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ger. 111	3	Fall
Ger. 112	3	Spring
German for Reading Ability (3+0)		
Rapid acquisition of reading knowledge with attention to needs in specialized fields. Credit applicable to degrees requiring one year of a foreign language with emphasis on reading skill.		

Ger. 201	4	Fall
Ger. 202	4	Spring
Intermediate German (4+0)		
Continuation of German 102. Increasing emphasis on reading ability and cultural material. Conducted in German. (Prerequisite: Ger. 102 or two years of high school German.)		

Ger. 301	3	Fall
Ger. 302	3	Spring
Advanced German (3+0)		
Discussions and essays on more difficult subjects for texts. Translations stylistic exercises, special grammatical problems, systematic vocabulary building. Conducted in German. (Prerequisite: Ger. 202 or equivalent. Next offered 1975-76.)		

Ger. 313	3	Fall
Ger. 314	3	Spring
German Civilization (3+0)		
History, development of the arts and of national institutions; extensive reading and classroom discussion. Conducted in German. (Prerequisite: Ger. 202. Next offered 1973-74.)		

Ger. 321	3	Fall
Ger. 322	3	Spring
Studies in German Literature		
Choice of authors, genres or periods of German literature for intensive study. Conducted in German. Students may repeat course for credit when topic varies. (Prerequisite: Ger. 202 or equivalent. Offered as demand warrants.)		

Ger. 323	3	Fall
Ger. 324	3	Spring
Survey of German Literature (3+0)		
Reading of texts representative of literary currents, genres, authors, epochs. Conducted in German. (Prerequisite: Ger. 202. Next offered 1974-75.)		

| Ger. 404 | 3 | Spring |
| Advanced Syntax and Oral Expression (3+0) | | |
| Continuation of Ger. 301 or 302. Analysis of difficult aspects of syntax and phonetics and practice in speaking and writing. Conducted in German. (Next offered 1975-76.) |
Course Descriptions

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ger. 443</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>19th Century German Literature (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primarily the works of Keller, Storm, Meyer, Stifrer, Raabe, Fontane, Helne, Hebbel, and Grillparzer. Conducted in German. (Next offered 1974-75.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ger. 445</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>Classicism (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A study of the Classic period in German literature, including works by Lessing, Goethe, and Schiller. Conducted in German. (Next offered 1974-75.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ger. 452</td>
<td>3 Credits</td>
<td>Spring</td>
</tr>
<tr>
<td>20th Century Novel (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primarily the works of Hesse, Mann, Kafka. Conducted in German. (Next offered 1974-75.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ger. 493</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>Credits Arr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ger. 494</td>
<td>3 Credits</td>
<td>Spring</td>
</tr>
<tr>
<td>Credits Arr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various subjects for advanced students. (Admission by arrangement. Offered as demand warrants.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HISTORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist. 100</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>Heritage of Alaska Natives (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The methodology of ethnohistory of Alaska Natives and consideration of cultural contacts, cultural breakdowns and interaction of Natives with other peoples.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 101</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>Western Civilization (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The origins and major political, economic, social and intellectual developments of western civilization to 1500.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 102</td>
<td>3 Credits</td>
<td>Spring</td>
</tr>
<tr>
<td>Western Civilization (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major political, economic, social and intellectual developments of western civilization since 1500.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 121</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>East Asian Civilization (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Great Tradition. Origin and development of the civilizations of China, Japan and Korea from the beginning to 1800, with emphasis on traditional social, political and cultural institutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 122</td>
<td>3 Credits</td>
<td>Spring</td>
</tr>
<tr>
<td>East Asian Civilization (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Modern Transformation. East Asia from 1800 to the present with emphasis on patterns of social cohesion, transition, and revolutionary change.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 131</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>History of the U.S. (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall semester: the discovery of America to 1865; colonial period, revolution, formation of the constitution, western expansion, Civil War. Spring Semester: from the reconstruction to the present.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 132</td>
<td>3 Credits</td>
<td>Spring</td>
</tr>
<tr>
<td>English History (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall semester: pre-Roman Britain to the end of the puritan revolution, emphasizing constitutional developments. Spring semester: from the restoration of 1680 to the present, emphasizing social and economic developments. (Offered in alternate years.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 221</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>Canadian History & Literature to 1867 (4+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Same as Engl. 254)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History and literature of Canada to 1867 taught jointly by staff members from the Departments of History and English.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 222</td>
<td>3 Credits</td>
<td>Spring</td>
</tr>
<tr>
<td>Canadian History and Literature: 1867 to the Present (4+0) (Same as Engl. 255)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History and literature of Canada from 1867 to the present taught jointly by staff members from the Departments of History and English.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 281</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>Russian History (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origins of Russia, Kievan Russia. The Mongol era and the rise of Muscovy. Modern Russia to the twentieth century.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 301</td>
<td>3 Credits</td>
<td>Fall</td>
</tr>
<tr>
<td>The French Revolution and Napoleon (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The political, social and economic structure of the old regime; intellectual developments in the eighteenth century; the revolution and the Napoleonic period; influence of France upon European development in the eighteenth century. (Prerequisite: Hist. 102.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 305</td>
<td>3 Credits</td>
<td>Fall-Spring</td>
</tr>
<tr>
<td>Europe: 1815 to 1870 (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political, economic, social and intellectual history. Development of industrial revolution, romantic movement and unification of Germany and Italy. (Prerequisite: Hist. 102. Offered in alternate years.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hist. 306</td>
<td>3 Credits</td>
<td>Fall-Spring</td>
</tr>
<tr>
<td>Europe: 1870 to 1914 (3+0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuation of Hist. 305. The rise of socialism, imperialism, outbreak of World War I. (Prerequisite: Hist. 102. Offered in alternate years.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Descriptions

Hist. 315 3 Credits Fall
Europe 1914-1945 (3+0)
World War I, the Russian Revolution, the Paris Peace Conference, Fascism, Nazism, the Stalin Revolution, the Great Depression, World War II. (Prerequisites: Hist. 101, 102 or admission by arrangement. Offered in alternate years.)

Hist. 316 3 Credits Spring
Europe since 1945 (3+0)
Germany and problems of the Peace, the Soviet Union and the Satellites, the Cold War, Economic Problems and Recovery, European Integration and the Common Market. Europe and the World. (Prerequisites: History 101, 102, or admission by arrangement.) (Offered in alternate years.)

Hist. 325 3 Credits Spring
American Labor History (3+0)
A topical history of the American labor movement from the 1840's to the present with particular emphasis placed upon the predecessors of the AFL-CIO. A number of alternatives to the AFL-CIO will be examined as well as the legal framework which governs present day industrial relations.

Hist. 330 3 Credits Fall
Modern China (3+0)
From 1800 to the present, with emphasis on resistance to change, rebellion, reform, revolution, and the rise of the People's Republic.

Hist. 331 3 Credits Spring
Modern Japan (3+0)
From 1600 to the present with an examination of change within tradition, rise to world power, and the position of Japan in the modern world.

Hist. 334 3 Credits As demand warrants
Diplomatic History of the United States (3+0)
A survey of foreign relations of the United States from 1775 to the present.

Hist. 341 3 Credits Fall
History of Alaska (3+0)
The Russian background; acquisition, settlement and development of Alaska as an American territory and the 49th State. (Prerequisite: junior standing.)

Hist. 344 3 Credits Spring
Twentieth Century Russia (3+0)
Origin and development of the Soviet Union from the Revolution of 1917 to the present day; stages of economic development; Soviet government and the Communist Party. (Prerequisites: Hist. 101, 102. Offered in alternate years.)

Hist. 375 3 Credits Fall-Spring
History of the Northern Pacific (3+0)
The historical development and interrelationships and problems of the North Pacific (Siberia, Canada, Alaska) from the 18th century to the present.

Hist. 380 3 Credits Spring
Polar Exploration and its Literature (3+0)
A survey of polar exploration efforts of all Western nations from A.D. 870 to the present and a consideration of the historical sources of this effort.

Hist. 416 3 Credits Fall-Spring
The Renaissance (3+0)
Political, social, economic and cultural developments in the age of the Renaissance. (Prerequisites: Hist. 101, 102. Offered in alternate years.)

Hist. 417 3 Credits Fall-Spring
The Reformation (3+0)
The Protestant and Catholic reformation. Political, economic, social and religious conflicts, 1500-1600. (Prerequisites: Hist. 101, 102. Offered in alternate years.)

Hist. 430 3 Credits Fall-Spring
American Colonial History (3+0)
Early America; European settlement; economic and social development of the American community, establishment of political independence. (Prerequisites: Hist. 131, 132. Offered in alternate years.)

Hist. 435 3 Credits Fall-Spring
Civil War and Reconstruction (3+0)
Political, economic, social and diplomatic history from 1860-77; disruption and re-establishment of the Union. (Prerequisites: Hist. 131, 132. Offered in alternate years.)

Hist. 440 3 Credits Fall-Spring
The Westward Movement (3+0)
Westward migration; establishment of new states and political institutions. Influences of the West. (Prerequisites: Hist. 131, 132. Offered in alternate years.)

Hist. 450 3 Credits Fall-Spring
Twentieth Century America (3+0)
United States from the progressive movement to the present day, with emphasis on domestic developments. (Prerequisites: Hist. 131, 132. Offered in alternate years.)

Hist. 461 3 Credits Spring
American Intellectual and Cultural History (3+0)
Lectures, readings, discussion. Examination of the
Course Descriptions

development of American thought, including the transfer and modification of European ideas and the influence of American conditions on popular attitudes and culture. (Prerequisites: Hist. 131, 132. Offered in alternate years.)

Hist. 475 3 Credits Fall
Hist. 476 3 Credits Spring

Historiography and Historical Method (3+0)
A two-semester sequence. Readings, lectures, and discussions on the nature of history, the history of historical study and writing, recent tendencies in historical scholarship, and methods of historical research. Lectures, etc., continue in the spring semester, which is devoted also to completion of two research papers begun in the fall. Lectures, discussion leadership, and direction of research papers are by the department staff.

Hist. 481 3 Credits Fall

Studies in the History of Modern Japan
(3+0)
An examination of significant problems in the history of Modern Japan, with particular attention being given to the process of modernization, and to the rise of Japan as a world power. (Prerequisites: Hist. 122 or 231, or permission of the instructor for those students whose prior training or background has prepared them for study at this level.)

Hist. 482 3 Credits Spring

Studies in the History of Modern East Asia
(3+0)
An examination of significant problems in the history of modern East Asia, such as a comparative study of the development of modern China and Japan, and problems of continuity and change in 19th and 20th century China, Japan and Korea. (Prerequisites: Hist. 122, Hist. 230 or Hist. 231, or permission of the instructor for those students whose prior training or background has prepared them for study at this level.)

Hist. 491 Credits Arranged Fall
Hist. 492 Credits Arranged Spring

Seminar in Northern Studies
An interdisciplinary seminar focusing on topics relating to the North with emphasis on the physical sciences, the peoples and the socio-economic and political aspects of the area. Specialists in the various fields will assign readings and conduct discussions.

Hist. 493 Credits Arranged Fall
Hist. 494 Credits Arranged Spring

Special Topics
Hist. 602 1 Credit Spring

The Teaching of History (1+0)
Discussions of the problems of teaching history, the materials available, the suitability of various techniques and materials at different levels, and the use of guides, indexes, bibliographies, handbooks, atlases, etc. Required of all candidates for the M.A. in History and Master of Arts in Teaching (History).

Hist. 691 3 Credits Fall-Spring

Seminar in European History (3+0)
Hist. 692 3 Credits Fall-Spring

Seminar in American History (3+0)
Hist. 693 Credits Arranged Fall
Hist. 694 Credits Arranged Spring

Special Topics (3+0)
Hist. 697 Credits Arranged Fall
Hist. 698 Credits Arranged Spring

Thesis

HOME ECONOMICS
H.E. 102 3 Credits Fall-Spring

Meal Management (2+3)
Planning, buying, preparing and serving meals. Emphasis on management, cost, and nutrition.

H.E. 105 3 Credits Fall

Survey of Child Development Center Models
(2+3)
Introduction to various approaches used today in child development centers.

H.E. 110 2 Credits Fall

Modern Meals (1+3)
Planning and preparation of quick, attractive and nutritious meals for today's living. Includes outdoor cooking and use of convenience foods. Open to men and women. (Cannot be substituted for H.E. 102.)

H.E. 113 3 Credits Fall

Clothing Construction and Selection I (2+3)

H.E. 120 3 Credits Fall

Child Nutrition and Health (3+0)

H.E. 155 3 Credits Spring

Activities for Young Children (2+3)
Selection, development and use of materials for art, literature, music, science and play activities for young children.
H.E. 160 3 Credits Fall
The Art of Skin Sewing (2+3)
Basic techniques of sewing skins including skin selection, preparation, patterns, cutting, stitching, applied designs, as used by the Natives of the Northern Regions of Alaska.

H.E. 211 3 Credits Fall
Textiles (2+3)
Identification, structure, selection, use and care of fabrics.

H.E. 215 2 Credits As demand warrants
Weaving (0+6)
(Same as Art 215.)
The study of various weaving techniques, including the traditional loom weaving, different kinds of primitive weaving (backstrap loom, Inko loom, Hungarian loom, etc.), tapestry weaving, macrame, and spinning and dyeing yarns. The emphasis will be on individual creativity and experimentation within these techniques.

H.E. 231 3 Credits Fall
Interior Design (3+0)
Principles of design and color as related to planning and decorating a home.

H.E. 236 3 Credits Fall-Spring
Marriage and Family Life (3+0)
Preparation for marriage and family life; personality development, dating, courtship, engagement, morality, reproduction, conflicts, money matters, crises, divorce, religion, parenthood, and other topics.

H.E. 241 3 Credits Fall-Spring
Home Management: Theory and Practicum (2+3)
Work simplification, time, energy, money management and their application in the home.

H.E. 245 3 Credits Fall-Spring
Child Development (2+3)
(Same as Psy. 245)
Theory and laboratory of human mental, emotional, social, and physical development. (Prerequisites: Psy. 101, 45 semester hours, and permission of the instructor.)

H.E. 250 3 Credits Fall
H.E. 251 3 Credits Spring
Practicum in Early Childhood Development (1+6)
Supervised participation in a program designed for young children. Seminar attendance required. (Prerequisites: H.E. 105, 150, 155.)

H.E. 260 3 Credits Fall
Advanced Skin Sewing (2+3)
Advanced techniques and creative projects in skin sewing including parka construction; mukluks; use of power machine; methods and materials unique to Southeast and Southwest Alaska. (Prerequisite: H.E. 160 or permission of instructor.)

H.E. 302 3 Credits Spring
Experimental Foods (2+3)
Application of scientific principles to the solution of problems in food preparation. (Prerequisite: Biol. 107-108 and Chem. 103-104.)

H.E. 304 3 Credits Fall-Spring
Nutrition (3+0)
Fundamental principles of human nutrition and their application to daily living.

H.E. 312 3 Credits Spring
Clothing Construction and Selection II (2+3)
Advanced clothing problems in selection, fitting, construction, fabrics and design; modern construction techniques. (Prerequisite: H.E. 113 or admission by arrangement.)

H.E. 401 3 Credits Fall-Spring
Consumer Education (3+0)
Problems of consumers in purchasing goods and services to satisfy wants and needs. Evaluation of information sources for consumer buyers; analysis of programs for consumer protection.

H.E. 407 3 Credits Spring
Parent Education (3+0)
The role of parents in child growth and development. Past and present methods of child rearing.

H.E. 412 3 Credits Fall-Spring
Clothing Problems (2+3)
Advanced work in clothing selection and construction with emphasis on identifying and solving individual clothing problems. (Prerequisite: H.E. 312.)

H.E. 413 3 Credits As demand warrants
Pattern Drafting and Draping (2+3)
Drafting of flat patterns and draping of fabrics; construction of student-designed garments. (Prerequisite: H.E. 312.)

H.E. 425 3 Credits Spring
Dynamics of Family Interaction (3+0)
Person-centered study of many factors affecting interpersonal relationships in the family, including communication, values, goals, roles, personality, sex, children. Marital relationships described in popular fiction and actual case studies will be analyzed. (Prerequisite: Psy. 101.)
Course Descriptions

H.E. 441 3 Credits Fall
Family Health (3+0)
Family and community health; home nursing, first aid.
(Offered in alternate years.)

H.E. 442 3 Credits Fall-Spring
Household Equipment (3+0)
Selection, operation, care and efficient arrangement of
household equipment for family use. (Recommended
prerequisite: H.E. 241. Offered as demand warrants.)

H.E. 491 Credits Arr. Fall
H.E. 492 Credits Arr. Spring
Seminar (1+0)
Selected topics in home economics.

H.E. 493 Credits Arr. Fall
H.E. 494 Credits Arr. Spring
Special Topics (1+0)
Various subjects studied, principally through directed
reading and discussions. (Admission by arrangement.)

JAPANESE

Jap. 101 5 Credits Fall
Jap. 102 5 Credits Spring
Elementary Japanese (5+0)
Development of the four skills (listening comprehension, speaking, reading, and writing) with
emphasis on oral work, practice in the language laboratory, basic grammar and vocabulary.
Romanized Japanese text for grammar and
conversation and standard Japanese text for reading.

Jap. 201 4 Credits Fall
Jap. 202 4 Credits Spring
Intermediate Japanese (4+0)
Continuation of Jap. 102 with increasing emphasis on
reading ability and cultural material. Standard
Japanese texts for reading including selections from
modern Japanese literature. (Prerequisite: Jap. 102 or
equivalent.)

JOURNALISM

Jour. 101 1 Credit Spring
Introduction to Journalism (1+1)
Survey presenting the professional aspects of the field
to give the students basic familiarity with the
opportunities, responsibilities and challenges of
journalism and to emphasize the realities of the
journalist's role. One hour lecture plus one hour
discussion weekly. Normally for second semester
freshmen.

Jour. 201 3 Credits Fall-Spring
News Writing (2+2)
Structure of news stories, various news leads and
feature stories; gathering and evaluating information
for simple news stories; writing stories. (Prerequisite:
Ability to type is essential.)

Jour. 203 3 Credits Fall-Spring
Basic Photography (2+2)
Theory and practice of picture-taking and processing;
emphasize on the camera in the modern press.

Jour. 212 3 Credits Fall-Spring
Editing (2+2)
Editing copy, writing headlines, and newspaper layout.
(Prerequisite: Jour. 201.)

Jour. 301 3 Credits Fall-Spring
Reporting (2+1)
News gathering and writing techniques with emphasis
on the vocabularies of public affairs reporting
including local, state and national governments, police
and the courts, labor and political party organizations.
(Prerequisite: Jour. 201.)

Jour. 303 3 Credits Fall-Spring
Advanced Photography (2+1)
Continuation of the basic course, with emphasis on the
picture story and free lance photography.
(Prerequisite: Jour. 203.)

Jour. 311 3 Credits Fall-Spring
Magazine Article Writing (2+1)
Study and practice in writing articles for publication in
national media. Students repeating the course limited to
a total of six credits. (Admission by arrangement.)

Jour. 320 3 Credits Spring
Journalism in Perspective (3+0)
A survey of the history and principles of journalism
examined in the light of today's problems and future
goals.

Jour. 324 2 Credits Fall
Newspaper Production and Typography (1+2)
Theory and practice of advertising, typographic design
and layout, coupled with a study of the methods of
printing production.

Jour. 339 3 Credits Spring
Principles of Advertising (3+0)
Theory and practice of advertising; including strategy,
media use, creation and production of advertisements
and measurement of advertising effectiveness.
Required for business administration majors;
alternative to Journalism 324 for journalism majors.

Jour. 333 1 Credit Spring
Current Affairs (1+0)
Study and discussion of current events. An analysis of
news events, trends and prevailing ideas and attitudes
in the nation as viewed through the mass media.
Jour. 401 3 Credits As demand warrants
Reporting Public Affairs (2+1)
Investigative, in depth reporting of major stories in special areas of Alaskan or regional interest. (Prerequisite: Jour. 301.)

Jour. 403 3 Credits As demand warrants
Cinematography (2+2)
Filming and editing news and documentary movies for television and educational purposes. (Prerequisite: Jour. 203 or instructor’s permission.)

Jour. 411 3 Credits Fall-Spring
Advanced Magazine Article Writing (3+0)
Study and practice in writing advanced articles for publication in national and international media. (Prerequisite: Permission of instructor.)

Jour. 413 3 Credits Fall
Law of the Press (3+0)
Study of the laws and regulations that govern the mass media; emphasis is placed on libel, censorship and copyright. (Prerequisite: Jour. 201 or permission of the instructor.)

Jour. 420 3 Credits As demand warrants
Biography (3+0)
Research and writing of biography and autobiography.

Jour. 441 3 Credits Spring
Editorial and Critical Writing (2+1)
Study and practice in the fields of persuasive, interpretive and evaluative writing on the professional level. Leadership role of the media in today’s society. (Prerequisite: Permission of the instructor.)

Jour. 493 Credits Arr. Fall
Jour. 494 Credits Arr. Spring
Special Topics
Various subjects in journalism. (Offered as demand warrants. Admission by arrangement.)

Jour. 685 Credits Arr. Fall
Jour. 696 Credits Arr. Spring
Research

Jour. 697 Credits Arr. Fall
Jour. 698 Credits Arr. Spring
Thesis

LAND RESOURCES
L.R. 102 2 Credits Fall
Conservation of Natural Resources (2+0)
Consideration of natural resources including discussion of their biological and physical nature, aspects of use, conflicts of use, and alternative means for conservation. Majors in all fields are welcome.

L.R. 103 1 Credit Fall
Conservation of Natural Resources (1+0)
Discussion section for material covered in L.R. 102. Must be taken concurrently with L.R. 102.

L.R. 311 3 Credits Spring
Soils (2+3)
Origin and development, weathering, classification, terminology; physical and chemical properties, biology, aeration, and moisture; reaction and liming; manures and fertilizers; management; problems in Alaska. (Prerequisite: Chem. 105.)

L.R. 321 3 Credits Spring
Introduction to Watershed Science (3+0)
Detailed examination of the hydrologic cycle with emphasis on land and atmospheric phases; influences of land management techniques and alternatives emphasized. (Prerequisites: Biol. 107-108, 109, L.R. 102, 103.)

L.R. 323 3 Credits Spring
Introduction to the Forest System (3+0)
Forestry concepts unifying soil, physiological, silvicultural, wildlife, recreational, watershed, fire, and entomological relationships; concepts applied to Alaska’s forest resources. (Prerequisites: Biol. 107-108, 271 and L.R. 102, 103 or permission of instructor.)

L.R. 414 3 Credits Spring
Principles of Outdoor Recreation Management (3+0)
Theories, practices, economics and problems fundamental to the use of land and related natural resources for recreation; relationship of wildland recreation in regional development. (Prerequisite: junior standing in biology or natural resources or permission of the instructor.)
Course Descriptions

L.R. 451 3 Credits Fall
Forest Influences (3+0)
Relationships between climate, soil, water and forest vegetation. Elements of wildland hydrology, soil erosion control and water yield. (Prerequisite: Permission of the instructor.)

L.R. 491 Credits Arr. Fall
L.R. 492 Credits Arr. Spring
Seminar
Topics in land resources. (Offered as demand warrants.)

L.R. 493 Credits Arr. Fall
L.R. 494 Credits Arr. Spring
Special Topics

L.R. 654 Credits Arr. Fall
Biometeorology
Solar radiation, energy balance relationships, and disposal of incident energy at the earth's surface; physical environment in relation to biological activity of plants and animals. Concepts emphasized. (Prerequisites: Calculus, physics, biology or permission of the instructor. L.R. 354 recommended.) Offered alternate years; next offered 1973-74.

L.R. 691 Credits Arr. Fall
L.R. 692 Credits Arr. Spring
Seminar
Topics in land resources. (Offered as demand warrants.)

L.R. 693 Credits Arr. Fall
L.R. 694 Credits Arr. Spring
Special Topics

L.R. 697 Credits Arr. Fall
L.R. 698 Credits Arr. Spring
Thesis
(Admission by arrangement.)

LIBRARY SCIENCE

Lib. Sci. 101 1 Credit Fall-Spring
Library Skills (0+0)
An independent study course in college library skills and some resources and facilities common to academic libraries in general and to the Rasmuson Library in particular. No class sessions are held; the student works at his individual rate and on his own time schedule.

Lib. Sci. 201 2 Credits Spring
Gen. Bibliography (2+0)
The General Bibliography course introduces the history and organization of the world of books, the means of access to them, and the formal principles of describing them through the preparation of an annotated bibliography.

LINGUISTICS

Ling. 101 3 Credits Fall
The Nature of Language (3+0)
A beginning course in the study of language: systematic analysis of human language and description of its grammatical structure, distribution and diversity.

Ling. 112 3 Credits Spring
Structure of Language (3+0)
Introduction to theory of language structure (syntax) and linguistic structural analysis of languages based on a transformational grammar model.

Ling. 216 3 Credits Spring
Languages of the World (3+0)
A comprehensive survey of the world's languages — both past and present. Topics to be covered include genetic relationships among languages, linguistic change, language universals, language classification and language families, as well as the interaction of culture and language.

Ling. 493 Credits Arr. Fall
Ling. 494 Credits Arr. Spring
Special Topics
Various languages and subjects in linguistics. (Admission by arrangement. Offered as demand warrants.)

MATHEMATICS

No student will be permitted to enroll in a course having prerequisites if a grade lower than C is received in the prerequisite course.

Math. 55 3 Credits Fall-Spring
Elementary Algebra (3+2)
A beginning course for students with a weak background. This course is designed to introduce the student to the basic concepts of algebra. Computational aspects of algebra are emphasized.

Math. 103 3 Credits Fall
Math. 104 3 Credits Spring
Concepts of Mathematics (3+0)
A cultural sequence for students requiring a year's sequence in mathematics. This course is designed to acquaint students, having a limited mathematical background, with mathematical thought and history. It emphasizes mathematical reasoning rather than formal manipulation. Topics may be chosen from number theory, topology, set theory, geometry, algebra and analysis. Not open to physical science majors and students having completed a course in calculus or beyond. Either semester may be taken separately without prerequisites.
Math. 105 3 Credits Fall-Spring
Intermediate Algebra (3+2)
A second course in algebra emphasizing solution of
linear and quadratic equations and inequalities.

Math. 106 5 Credits Fall-Spring
College Algebra and Trig. (5+0)
A study of functions and their graphs. Included are the
polynomial, rational, trigonometric, exponential, and
logarithmic functions. Also included is a brief
discussion of conic sections.

Math. 110 3 Credits Spring
Mathematics of Finance (3+0)
Simple and compound interest, discount, annuities,
amortization, sinking funds, depreciation and
capitalization. (Prerequisite: one year high school
algebra or its equivalent.)

Math. 121 4 Credits Fall
Math. 122 4 Credits Spring
Elementary Functions and Modern Algebra
(4+0)
First semester: sets, logic, groups and fields, vectors,
analytic geometry, relations and functions. Second
semester: complex numbers, exponential functions,
logarithmic functions, trigonometry.

Math. 200 4 Credits Fall-Spring
Math. 201 4 Credits Fall-Spring
Math. 202 4 Credits Fall-Spring
Calculus (4+0)
Techniques and application of differential and integral
calculus, vector analysis, partial derivatives, multiple
integrals and infinite series. (Prerequisites: Math. 106 or
122.)

Math. 203 4 Credits Fall
Finite Math. (4+0)
A finite mathematics course designed for non-math
majors. Topics covered include: Symbolic logic,
partitions, binomial and multinomial theorems,
probability, finite stochastic processes, linear algebra,
Markov chain, linear programing, game theory.
(Prerequisite: Math. 200 or permission of the
instructor.)

Math. 205 3 Credits Spring
Mathematics for Elementary School
Teachers (3+1)
Set theory, real number system and subsystems,
informal geometry, relations and functions, modular
arithmetic, bases, logic. (Prerequisite: Math. 105 and/
or placement.)

Math. 302 3 Credits Fall
Differential Equations (3+0)
Nature and origin of differential equations; first order
equations and solutions; linear differential equations
with constant coefficients, systems of equations, power
series solutions, operational methods, applications.
(Prerequisite: Math. 202.)

Math. 303 3 Credits Fall
Math. 304 3 Credits Spring
Introduction to Modern Algebra (3+0)
Introduction to sets, groups, rings, fields, and Galois
theory.

Math. 305 3 Credits On Demand
Geometry (3+0)
Topics selected from such fields as: projective
geometry, algebraic geometry, algebraic topology, and
gometry of convex bodies.

Math. 310 3 Credits Spring
Numerical Analysis (3+0)
Finite differences, numerical solutions of differential
equations, relaxation methods, interpolation,
equations, and matrices. Error analysis. (Prerequisite:
Math. 302.)

Math. 312 3 Credits Spring
Numerical Methods for Engineers (3+0)
Numerical methods and computer programming
designed for engineering students. FORTRAN
language for IBM 1620; numerical approximations,
solution of differential equations, nonlinear equations,
iterative and direct methods for simultaneous linear
equations. Individual use of computer parallels lecture
topics. (Prerequisite: Math. 302 or concurrently with
Math. 302.)

Math. 314 3 Credits Spring
Linear Algebra (3+0)
Linear equations, finite dimensional vector spaces,
matices, determinants, linear transformations,
characteristic values. Inner product spaces.
(Prerequisite: Math. 201.)

Math. 319 3 Credits Fall
Math. 320 3 Credits Spring
Intermediate Analysis
Math. 319: An investigation of the limit concept with
special reference to functions on the real line, sequences
and series of real numbers, and integration of
continuous functions. (Prerequisite: Math. 202, 314.)
Math. 320: Functions of several variables,
transformations, mappings, implicit function theorems,
Green's theorem. (Prerequisite: Math. 319.)

Math. 345 3 Credits Upon Demand
Modern Math Concepts for the Elementary
School
Includes a study of the historical development of
numeral systems together with operations in various
Course Descriptions

bases. Properties of numerals and numbers are discussed. A brief study of symbolic logic precedes an investigation of the structure of arithmetic, seeking basic principles underlying operations with various number and abstract systems. A survey of informal and intuitive geometry and its relationship with number systems is included. (Prerequisite: One full year of elementary school teaching.)

Math. 371 3 Credits Fall
Probability (3+0)
Probability spaces, conditional probability, random variables, continuous and discrete distributions, expectation, moments, moment generating functions, and characteristic functions. (Prerequisite: Math. 202.)

Math. 403 3 Credits Fall
Introduction to Real Analysis (3+0)
Sets, real numbers, functions. Topology of Metric Spaces, mappings. (Prerequisite: Math. 320.)

Math. 404 3 Credits Spring
Topics in Analysis or Topology (3+0)
To be alternated with Math. 410. Topics to be announced at the time of registration. (Prerequisite: Math. 403.)

Math. 405 3 Credits Fall
Math. 406 3 Credits Spring
Applied Mathematics (3+0)
Infinite series, functions of several variables, algebra and geometry of vectors, matrices, vector field theory, partial differential equations, complex variables. (Prerequisite: Math. 302 or permission of the instructor. To be offered in alternate years.)

Math. 407 3 Credits Fall
Math. 408 3 Credits Spring
Mathematical Statistics (3+0)
Distribution of random variables and functions of random variables, interval estimation, point estimation, sufficient statistics, order statistics, text of hypotheses including criteria for goodness of test. (Prerequisite: Math. 372. Offered as demand warrants.)

Math. 410 3 Credits Spring
Introduction to Complex Analysis (3+0)
To be alternated with Math. 404. Analytic function. Cauchy’s theorem. Sequences and series. (Prerequisite: Math. 320.)

Math. 411 3 Credits On Demand
Differential Equations (3+0)

Math. 417 3 Credits Fall
Differential Geometry (3+0)
Differential geometry of curves and space in Euclidean three-space and extensions to Riemannian n-space.

Math. 491 Credits Arr. Fall
Math. 492 Credits Arr. Spring
Seminar
Topics are selected according to needs and interests of the students to introduce them to independent study and research.

Math. 493 Credits Arr. Fall
Math. 494 Credits Arr. Spring
Special Topics
Primarily for mathematics majors. Various topics studied.

Math. 601 3 Credits Fall
Math. 602 3 Credits Spring
Complex Function Theory (3+0)
Analytic functions, singularities, analytic continuation, integration, Riemann surfaces, the logarithmic function, conformal representation. (Prerequisite: Math. 403 or admission by arrangement. Offered as demand warrants.)

Math. 605 3 Credits Fall
Math. 606 3 Credits Spring
Real Function Theory (3+0)
The Lebesgue integral on the line, metric spaces, Banach spaces, general theory of measure and integration. (Prerequisite: Math. 403 or admission by arrangement.)

Math. 608 3 Credits Spring
Partial Differential Equations (3+0)
First and second order differential equations, boundary value problems, existence and uniqueness theorems. Green’s functions, principal equations of mathematical physics. (Prerequisite: Math. 408 or admission by arrangement. Offered as demand warrants.)

Math. 609 3 Credits Fall
Math. 610 3 Credits Spring
Modern Algebra (3+0)
Groups, rings, fields, Galois theory, additional selected topics. (Prerequisite: Math. 304 or admission by arrangement.)

Math. 611 3 Credits Fall
Math. 612 3 Credits Spring
Mathematical Physics (3+0)
(‘Same as Phys. 611, 612)
Advanced consideration of such topics as transform methods, asymptotic methods, Green’s function, Sturm-Liouville theory, conformal mapping and calculus of variations with applications to problems
MECHANICAL ENGINEERING

M.E. 150 1 Credit Fall-Spring
Aerodynamics for Pilots (1+1)
Nature of the atmosphere, elementary air foil theory, drag and power requirements, performance computations, and introduction to stability. For those who desire a basic understanding of flight with minimum mathematical background. (Prerequisite: high school algebra and general science.)

M.E. 302 4 Credits Fall-Spring
Mechanisms (3+3)
Kinematics and force analysis of linkages, cams and gear trains. Design of mechanisms. (Prerequisites: E.S. 208 and E.S. 331.)

M.E. 391 3 Credits Fall
Industrial Processes (3+0)
Methods and equipment used in working, welding, casting, cutting, machining, and fabricating materials.

M.E. 401 3 Credits Fall-Spring
Stress Analysis (3+0)
Introduction to elasticity, elastic stability, plates and shells, rheology, and failure mechanisms. (Prerequisites: E.S. 331 or consent of instructor.)

M.E. 402 3 Credits Fall-Spring
Vibration (3+0)

M.E. 413 4 Credits Fall-Spring
Mechanical Engineering Thermodynamics (3+3)
Continuation of E.S. 346, including vapor power cycles (Rankine, reheat, binary, and regenerative cycles); flow through nozzles and diffusers; gas power cycles; gas mixtures and psychrometrics; vapor compression refrigeration cycles. (Prerequisite: E.S. 346.)

M.E. 414 3 Credits Spring
Thermal Systems (3+0)
Introduction to power and space conditioning systems. Energy conversion, electric power distribution, heating and refrigeration equipment including mechanical, hydraulic, pneumatic, electric, and electronic systems. (Prerequisite: senior standing. Offered as demand warrants.)

M.E. 430 3 Credits Fall-Spring
Instruments and Controls (2+3)
Automatic control and instrumentation of equipment including mechanical, hydraulic, pneumatic, electric, and electronic systems. (Prerequisite: Senior standing. Offered as demand warrants.)

M.E. 441 3 Credits Fall
Mass and Energy Transfer (3+0)
Heat transfer, diffusion, ablation, and flame propagation. (Prerequisite: E.S. 346.)

M.E. 450 3 Credits Fall-Spring
Theory of Flight (3+1)
Airfoil theory in subsonic and supersonic flow. Propulsion systems, stability, and performance of aircraft. (Prerequisite: E.S. 341.)

M.E. 491 1 Credit Fall
M.E. 492 1 Credit Spring
Mechanical Engineering Seminar (1+0)
Written and oral presentation of preliminary, interim, and final reports on an independent study project. (Prerequisite: Consent of instructor.)

M.E. 493 Credits Arr. Fall
M.E. 494 Credits Arr. Spring
Special Problems
Guided study of special topics of interest to the student. (Prerequisite: approval by instructor and advisor.)

M.E. 610 3 Credits Spring
Space Conditioning (3+3)
Principles of heating, ventilating, air conditioning, and refrigeration with practical applications. (Prerequisite: M.E. 441.)

M.E. 617 4 Credits Fall
Power Analysis (3+3)
Fundamentals of power generation including piping, pumps, fuels and combustion, steam generators, condensers, deaerators, evaporators, feedwater treatment and heating, regeneration, fuel handling, heat balance, equipment, economics, and plant layout. (Prerequisite: M.E. 413.)
Course Descriptions

M.E. 693 Credits Arr. Fall Research and thesis preparation. (Prerequisite: graduate standing.)

M.E. 694 Credits Arr. Spring Thesis

MEDICAL SCIENCE

Med.S. 500 2 Credits Fall Medicine and Society (3+0)
Social aspects of medical care delivery and psychological aspects of disease; adjustment to chronic and terminal disease; disease in both young and aged; psychologic adjustment to society; family planning, adoption and abortion; economic aspects of health coverage; role of State and Federal agencies in health care delivery; etc. (Prerequisite: Medical school freshman status or concurrent enrollment in Med.S. 520 and consent of instructor.)

Med.S. 505 2 Credits Fall Biostatistics and Epidemiology (3+0)
Selected biostatistical and epidemiological concepts, with emphasis on statistical thinking and medical decision-making. Collection, organization, manipulation and interpretation of data pertinent to clinical medicine; epidemiology in understanding morbidity and mortality forces; statistical methods for the solution of epidemiological problems. (Prerequisite: Medical school freshman status or upper division status and consent of instructor.)

Med.S. 515 4 Credits Fall Physiological Control (3+0+1)
Fundamentals of physiologic control, including membrane transport, function of nervous and sensory system, muscle contraction, and introduction to cardiovascular and endocrine regulation. Emphasis on physiological control systems and feedback concepts. Introductory pharmacology, including drug absorption, metabolism, detoxification, and excretion; mechanism of action of drugs, and variability of dose response. Major concepts illustrated by clinical conditions. (Prerequisite: Medical school freshman status or concurrent enrollment in Med.S. 511 and consent of instructor.)

Med.S. 518 4 Credits Fall Histology (3+4)
Light and electron microscopic structure and basic functional relationships of cells, tissues and organs. Pathological alterations will be employed to emphasize the structural and functional properties of normal components. (Prerequisite: Medical school freshman status or consent of the instructor. Basic knowledge of biological chemistry is highly recommended.)

Med.S. 519 1 Credit Fall Human Embryology (1+0)
Fertilization through parturition, with emphasis on development of systems pertaining to the understanding of gross anatomy and congenital malformations. Companion course to Med.S. 520, Gross Anatomy. (Prerequisite: Medical school freshman status or concurrent enrollment in Med.S. 520 and consent of instructor.)

Med.S. 520 2 Credits Fall Gross Anatomy (1+4)
Gross anatomy of the thorax, abdomen and pelvis with special reference to commonly encountered anomalies, pathology, physical diagnosis, and surgical approach. Human dissection. (Prerequisite: Medical school freshman status or concurrent enrollment in Med.S. 518 and consent of instructor.)

Med.S. 551 5 Credits Fall Biochemistry (5+0)
An interdisciplinary course in biochemistry; cytology and cytogenetics; elementary microbial physiology and genetics; mammalian metabolism, nutrition, and basic genetics. Medical problems used to illustrate major principles. (Prerequisite: Medical school freshman status or one year of organic chemistry or consent of instructor.)

METALLURGY

Met. 304 3 Credits Spring Introduction to Metallurgy (3+0)
Definitions and principles of basic science and engineering principles as applied to process and adaptive metallurgy. (Prerequisites: Chem. 211, Phys. 212.)

Met. 312 2 Credits Spring Fire Assaying (0+4)
Sampling and preparation of ores, mill products, and smelter products for assay. Assaying gold, silver and lead. (Prerequisite: permission of the instructor. Offered as demand warrants.)

Met. 332 4 Credits Spring Physical Metallurgy and Metallography (3+3)
Properties of metals and alloys, metal crystals, chemical and metallic bonds, equilibrium diagrams, defect in metals, heat treatment, pyrometry, foundry, forging welding, principles and application of electron microscope, x-ray. Electron and x-ray diffraction. Equipment used in metallurgy. (Prerequisite: Met. 304. Offered as demand warrants.)

Met. 493 Credits Arr. Fall Special Topics
Met. 494 Credits Arr. Spring Various subjects studied, principally through directed reading and discussions. (Admission by arrangement.)
Course Descriptions

MINERAL AND PETROLEUM TECHNOLOGY

M.P.T. 61 3 Credits Fall
Math for Technicians (3+0)
Arithmetic, trigonometry, slide rule, graphs, and computations applicable to mineral and petroleum fields.

M.P.T. 62 3 Credits Spring
Mineralogy and Petrology (2+3)
Mineral and rock identification of hand specimens. Physical characteristics and simple chemical tests.

M.P.T. 63 2 Credits Fall
Map Reading and Drafting (0+6)
Map interpretation, lettering, drafting and use of equipment.

M.P.T. 64 3 Credits Spring
Measurements and Mapping (2+3)
Use of brunton, transit, level and other surveying equipment. Map preparation.

M.P.T. 65 3 Credits Fall
Science for Technicians (3+0)
Basic principles of chemistry and physics as applicable to mineral and petroleum technology.

M.P.T. 67 3 Credits Fall
Petroleum I (3+0)
Introduction to petroleum industry. Practical exploration, drilling technology and production.

M.P.T. 68 3 Credits Spring
Petroleum II (3+0)
Oilwell service and workover, pipeline, transportation and storage technology.

M.P.T. 69 3 Credits Fall
Geography and Geology (3+0)
Introduction to geography and physical geology with emphasis to Alaska.

M.P.T. 71 3 Credits Fall
Exploration Methods (2+3)
Introduction to geochemical, geophysical and physical methods of exploration in mineral and petroleum fields.

M.P.T. 72 3 Credits Spring
Milling and Metallurgy (2+3)
Sampling and sample preparation. Methods of ore dressing on a unit and continual basis. Introduction to physical metallurgy.
Course Descriptions

M.P.T. 73 2 Credits Fall
Technical Drawing (2+0)
Drafting methods used in exploration and productions, geometric construction, orthographic projection, sectioning and pictorial representation.

M.P.T. 74 3 Credits Spring
Laboratory Instrumentation and Control (2+3)
Introduction to practical laboratory techniques, modern instrumentation methods and applications.

M.P.T. 75 3 Credits Fall
Petroleum III (2+3)
Production processing and instrumentation. Technology, field and laboratory testing.

M.P.T. 76 3 Credits Spring
Petroleum IV (3+0)
Petroleum geology, reservoir and conservation technology.

M.P.T. 78 3 Credits Spring
Computer Applications (2+3)
Introduction to computer applications in mineral and petroleum industries. Familiarization with FORTRAN II programming language.

M.P.T. 80 3 Credits Spring
Introduction to Mineral and Petroleum Economics (3+0)
Elements of economics, resource economics and operational cost analysis applied to mineral and petroleum production.

M.P.T. 82 1 Credit Spring
Field Trip
Field trip to observe exploration and operational functions in mineral and petroleum fields. Technical report required.

MINERAL PREPARATION ENGINEERING

M.Pr. 313 3 Credits Fall
Introduction to Mineral Preparation (2+3)
Elementary theory and principles of unit processes of liberation, concentration, and solid-fluid separation as applied to mineral beneficiation. (Prerequisite: junior standing or permission of the instructor.)

M.Pr. 314 3 Credits Spring
Unit Preparation Processes (1+6)
Principles and practices involved in liberation and concentration by gravity, electro-magnetic and electrostatic methods. Analysis of costs and economics of mill operation. Flowsheets for different ores developed in the laboratory on a pilot plant scale. (Prerequisite: M.Pr. 313.)

M.Pr. 406 3 Credits Spring
Materials Handling Systems (2+3)
The techniques and design of systems to move ore, concentrates and waste materials in mining and milling operations. (Prerequisite: senior standing or permission of the instructor.)

M.Pr. 418 4 Credits Spring
Emission Spectroscopy, X-Ray Spectroscopy, Atomic Absorption and Electron Microscopy (2+3)
Can be taken for any combination of parts A, B, C, D as demand warrants. (Admission by special arrangement.)

M.Pr. 418A — Theory and application of emission spectrography; two one-hour classes; one three-hour lab per week for five weeks. One credit.

M.Pr. 418B — Theory and application of x-ray spectrography and diffractometer; two one-hour classes; one three-hour lab per week for five weeks. One credit.

M.Pr. 418C — Theory and application of atomic absorption spectrophotometry; two one-hour classes; one three-hour lab per week for five weeks. One credit.

M.Pr. 418D — Theory and application of electron microscope; two one-hour classes; one three-hour lab per week for five weeks. One credit.

M.Pr. 431 2 Credits Fall
Applied Ore Microscopy (1+3)
Preparation of polished sections of ores. Identifications of ore minerals in reflected light by physical, optical, and chemical methods. Applications to ore genesis, drill core interpretation, beneficiation, and process control. (Prerequisite: Geol. 213 or permission of the instructor.)

M.Pr. 433 3 Credits Fall
Coal Preparation (3+3)
Unit operations, flowsheets, washability characteristics, and control by sink-float methods for coal preparation plants. Market requirements and economics of preparation. (Prerequisite: M.Pr. 313.)

M.Pr. 483 Credits Arr. Fall
M.Pr. 494 Credits Arr. Spring
Special Topics
Various subjects studied through directed reading, discussions, and laboratory work. (Admission by arrangement.)
M.Pr. 601 3 Credits Fall
Froth Flotation (2+3)
Theory and application of bulk and differential froth
floation to metallic minerals, non-metallic minerals,
and coal. (Admission by arrangement.)

M.Pr. 606 3 Credits Spring
Plant Design (1+6)
Selection, design and layout of equipment for erection
and operation of mineral and coal beneficiation plants
for specific custom and milling problems. (Admission
by arrangement.)

M.Pr. 693 Credits Arr. Fall
M.Pr. 694 Credits Arr. Spring
Special Topics
Various subjects studied. (Admission by arrangement.)

M.Pr. 695 3 Credits Fall
M.Pr. 696 3 Credits Spring
Mineral Preparation Research (1+6)
Familiarizes students with the concept of basic research
and its needs in the field of mineral beneficitation,
including such research subjects as magnetic
susceptibility, dielectric constants, and electrical
conductivity of minerals; chemical theory and
mechanism of bubble contact in flotation; the effect
of ultrasonic vibration in unit processes. (Admission by
arrangement.)

M.Pr. 697 3 Credits Fall
M.Pr. 698 3 Credits Spring
Thesis
Application of fundamentals to the actual beneficitation
problems of Alaskan ores; to produce increased
effectiveness in ability to organize, interpret and
present the results of research clearly, precisely, and
with meaning in acceptable thesis form.

MINING ENGINEERING

Min. 101 3 Credits Fall
Minerals and Man (3+0)
A general survey of the impact of the mineral industries
on man's economic, political and environmental
systems.

Min. 102 4 Credits Spring
Mining Engineering Systems (4+0)
Can be taken in any combination of parts A, B, C. Min.
102A: Introduction to mineral industries and
elementary principles of exploration. Four one-hour
classes per week for four weeks. One credit. Min. 102B:
Utilization and application of mining explosives. Four
one-hour classes for four weeks. One credit. Min. 102C:
Fundamentals of mining systems for bedded, massive,
vein and surface deposits. Four one-hour classes per
week for eight weeks. Two credits.

Min. 202 3 Credits Spring
Mine Surveying (2+3)
Surveying principles for surface and underground
control of mining properties. Field and office
procedures for preparation of maps and engineering
data. (Prerequisite: Math. 106.)

Min. 311 3 Credits Fall
Evaluation of Engineering Data (3+0)
Application of statistical principles and elements of
probability to aid in the design and analysis of
engineering experiments with special emphasis on
probability models, sampling and significance testing
including analysis of variance. (Prerequisite: Math.
202.)

Min. 350 1 Credit Fall-Spring
Seminar and Senior Field Trip
Mining field trip. Mines and districts, selected for
exemplifying and providing instruction in geological
principles, mining methods, metallurgical practices,
and industrial economics. Seminar discussions cover
operations and industries visited and current mineral
industry problems. (Prerequisites: senior standing and
permission of the instructor. Fee: field trip expenses to
be paid by student. Offered as demand warrants.)

Min. 333 2 Credits Fall
Mining and Mineral Leasing Law (6+0)
History of the development of mining law; the
essentials of mining laws of the United States and
Alaska. Discussions and interpretation of important
court decisions in mining litigation. (Offered as
demand warrants.)

Min. 400 1 Credit Spring
Practical Engineering Report
Twelve weeks of practical work in some industry or
project related to the students' option, or equivalent.
Performed during one or more of the summer
vacations prior to the fourth year. (Offered as demand
warrants.)

Min. 401 3 Credits Fall
Rock Mechanics (2+3)
Analysis of stress and strain. Physical properties of rock
and fundamentals of rock behavior. Rock stresses in
mining with design and layout of underground
workings. (Prerequisite: E.S. 331 or concurrent
registration.)

Min. 402 3 Credits Spring
Energy Economics (3+0)
Economics of mineral fuels in the competitive market;
regional and national projection of energy supply and
demand; structure of coal, petroleum, natural gas, and
uranium industries; and seminar on energy policies.
(Admission by arrangement.)
Course Descriptions

Min. 403 3 Credits Fall
Operations Research in Mineral Industries (2+3)
The application of operations research techniques in mineral exploration, mineral economics, mine systems, and mineral preparation. (Prerequisite: senior standing or permission of the instructor.)

Min. 405 3 Credits Fall
Geophysical and Geochemical Exploration (2+3)
Theory and techniques of geophysical and geochemical exploration. Chemical, gravimetric, seismic, electrical, magnetic and radioactive measurements. (Prerequisites: Chem. 202, Phys. 212.)

Min. 406 3 Credits Spring
Mining Plant Engineering (3+0)
Principles of mine ventilation, haulage, hoisting, pumping and energy transmission system. (Prerequisites: Min. 102, Phys. 212 and E.S. 341.)

Min. 470 2 Credits Spring
Environmental Workshop (2+0)
(Same as Geol. 470)
Problem study concerning an environmental project of local interest. (Prerequisite: Junior or senior standing and permission of instructor.)

Min. 493 Credits Arr. Fall
Min. 494 Credits Arr. Spring
Special Topics
Various subjects studied, principally through directed reading and discussion. (Admission by arrangement.)

Min. 497 Credits Arr. Fall
Min. 698 Credits Arr. Spring
Thesis

MUSIC

Mus. 101 1 Credit Fall-Spring
Chorus (0+3)

Mus. 109 1 Credit Fall-Spring
Varsity Band (0+3)

Mus. 203 1 Credit Fall-Spring
Orchestra (0+3)

Mus. 205 1 Credit Fall-Spring
Concert Band (0+3)

Mus. 211 1 Credit Fall-Spring
"Choir of the North" (0+3)

Mus. 307 1 Credit Fall-Spring
Chamber Music (0+3)

Mus. 313 1, 2, 3 Credits Fall-Spring
Opera Workshop (0+3, 6 or 9)

Mus. 151, 152 1 Credit Fall
Mus. 251, 252 1 Credit Spring
Class Lesson (0+3)
Class instruction in piano, voice, or orchestral instrument.

Mus. 161, 162 2 or 4 Credits Fall-Spring
Mus. 261, 262 2 or 4 Credits Fall-Spring
Mus. 361, 362 2 or 4 Credits Fall-Spring
Mus. 461, 462 2 or 4 Credits Fall-Spring
Private Lessons (1/2 or 1+1)
Private instruction in piano, voice, or instruments. Private instruction shall consist of one private lesson and one master class per week. Music performance majors may enroll for four credits. All others will normally enroll for two credits. (Prerequisite: Admission by audition.)

MUSIC THEORY AND HISTORY

Mus. 103 3 Credits Fall
Music Fundamentals (3+0)
Rudiments of music for students with little or no prior training in music reading.

Mus. 123 3 Credits Fall
Mus. 124 3 Credits Spring
Appreciation of Music (3+0)
Cultivation of the understanding and intelligent enjoyment of music through a study of its elements,
forms, and historical styles. Open to all students, including music majors.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mus. 131</td>
<td>3</td>
<td>Fall</td>
<td>Basic Theory (3+3)</td>
</tr>
<tr>
<td>Mus. 132</td>
<td>3</td>
<td>Spring</td>
<td>First semester: Intensive training in musical skills, including sight reading, ear training, and keyboard. Use will be made of programmed materials in a laboratory situation as an adjunct to classroom exposition of musical materials. Second semester: Concentration upon acquisition of skill in harmonic and formal analysis and guided stylistic composition.</td>
</tr>
<tr>
<td>Mus. 221</td>
<td>3</td>
<td>Fall</td>
<td>History of Music (3+0)</td>
</tr>
<tr>
<td>Mus. 222</td>
<td>3</td>
<td>Spring</td>
<td>Fall semester: Music before 1750; Spring semester: Music since 1750. (Prerequisite: Mus. 131-132 or permission of the instructor.)</td>
</tr>
<tr>
<td>Mus. 231</td>
<td>3</td>
<td>Fall</td>
<td>Advanced Theory (3+0)</td>
</tr>
<tr>
<td>Mus. 232</td>
<td>3</td>
<td>Spring</td>
<td>Continued study, in depth, of harmony and musical form through analysis of representative works from the standard repertoire. The second semester will be devoted to study and synthesis of 20th century stylistic and harmonic idioms. (Prerequisites: Mus. 131-132 or permission of instructor.)</td>
</tr>
<tr>
<td>Mus. 309</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Elementary School Music Methods (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Same as Ed. 309) Principles, procedures and materials for teaching music to children at the elementary level. (Prerequisite: Ed. 313 and prerequisites thereto.)</td>
</tr>
<tr>
<td>Mus. 315</td>
<td>2</td>
<td>Fall-Spring</td>
<td>Music Methods and Techniques (1+3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Instruction in voice and the basic instruments of band and orchestra.</td>
</tr>
<tr>
<td>Mus. 331</td>
<td>2</td>
<td>Fall</td>
<td>Form and Analysis (2+0)</td>
</tr>
<tr>
<td>Mus. 332</td>
<td>2</td>
<td>Spring</td>
<td>A detailed survey of formal and stylistic musical elements in historical context, with special application to problems of proper stylistic performance. Fall semester: 17th century to 1800. Spring semester: 1800 to the present. (Prerequisite: Mus. 232 or permission of the instructor.)</td>
</tr>
<tr>
<td>Mus. 351</td>
<td>2</td>
<td>Fall</td>
<td>Choral Conducting (2+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Principles of conducting and interpretation with vocal ensembles. (Prerequisite: Mus. 232.)</td>
</tr>
</tbody>
</table>

Course Descriptions

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mus. 352</td>
<td>2</td>
<td>Spring</td>
<td>Instrumental Conducting (2+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Principles of conducting and interpretation with instrumental ensembles. (Prerequisite: Mus. 232.)</td>
</tr>
<tr>
<td>Mus. 405</td>
<td>3</td>
<td>As demand warrants</td>
<td>Methods of Teaching Music (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Same as Ed. 405) Methods and problems of teaching music in junior and senior high schools, with emphasis on the general music program. (Prerequisites: 100 semester hours, Ed. 332 and prerequisites thereto, and Mus. 232, or permission of the instructor.)</td>
</tr>
<tr>
<td>Mus. 431</td>
<td>3</td>
<td>Fall</td>
<td>Counterpoint (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study of contrapuntal techniques of the sixteenth and eighteenth century, by means of analysis and synthesis of pieces in contrapuntal idiom.</td>
</tr>
<tr>
<td>Mus. 432</td>
<td>3</td>
<td>Spring</td>
<td>Orchestration and Arranging (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Principles and practices of instrumentation and arranging for vocal and instrumental ensembles.</td>
</tr>
<tr>
<td>Mus. 491</td>
<td>2</td>
<td>Fall</td>
<td>Senior Seminar (3+0)</td>
</tr>
<tr>
<td>Mus. 492</td>
<td>2</td>
<td>Spring</td>
<td>Variety of subject matter depending on the interests and needs of students.</td>
</tr>
<tr>
<td>Mus. 493</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Special Topics</td>
</tr>
<tr>
<td>Mus. 494</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Various subjects. (Admission by arrangement.)</td>
</tr>
<tr>
<td>Mus. 693</td>
<td>Credits Arr.</td>
<td>Fall</td>
<td>Special Topics</td>
</tr>
<tr>
<td>Mus. 694</td>
<td>Credits Arr.</td>
<td>Spring</td>
<td>Various subjects. (Admission by arrangement.)</td>
</tr>
</tbody>
</table>

OCEANOGRAPHY AND OCEAN ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCN 411</td>
<td>3</td>
<td>Fall</td>
<td>General Oceanography (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Description of the oceans and ocean processes; inter-relationship of disciplinary sciences to the field; historical facts of oceanography, modern developments, and trends in the field. (Prerequisite: senior or graduate standing in a disciplinary science, mathematics or engineering.)</td>
</tr>
<tr>
<td>OCN 613</td>
<td>3</td>
<td>Fall</td>
<td>Advanced Marine Geology (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Same as Geol. 613) An intensive study of marine geologic problems and</td>
</tr>
</tbody>
</table>
Course Descriptions

processes base upon extensive reading in the current literature and conducted in seminar style. (Prerequisites: senior or graduate standing in geology or appropriate interdisciplinary programs; or permission of the instructor.)

OCN 614 3 Credits Spring
Marine Geophysics (3+0)
(Same as Geol. 614)
Marine geophysical methods including gravity, magnetics, refraction and reflection profiling, heat flow measurements. Geophysical signatures of oceanic plates and of their accreting and consuming margins.

OCN 620 3 Credits Fall
Introduction to Physical Oceanography (3+0)
(Same as Phys. 620 & Geol. 620)
Physical description of the sea, physical properties of sea water, methods and measurements, boundary processes, currents, tides and waves, regional oceanography. (Prerequisite: science or engineering degree, or permission of the instructor.)

OCN 622 3 Credits Fall
Ocean Currents and Water Masses (3+0)
Theories of ocean circulation, wind currents, and boundary currents. Topographic influences on currents, origin of water masses, instruments, and observations. (Prerequisite: OCN 620 or permission of the instructor.)

OCN 624 3 Credits Spring
Estuarine Dynamics (3+0)
Kinematics and dynamics of estuarine circulation. Relations between field of motion and water mass properties. Theoretical and practical techniques for the analyses of estuarine systems. (Prerequisites: OCN 620 and Math. 302; or permission of the instructor.)

OCN 650 3 Credits Fall
Introduction to Biological Oceanography (3+0)
Survey of marine plants and animals and their relationships with major emphasis on primary productivity and marine food chains.

OCN 661 3 Credits Spring
Chemical Oceanography I (3+0)
(Same as Chem. 661)
Chemical composition and properties of sea water; evaluation of salinity; pH, excess base, and carbon dioxide system; interface reactions; dissolved gases; organic components and trace inorganic components. (Prerequisites: Chem. 212, 322, 332, or permission of the instructor.)

OCN 663 3 Credits Fall
Chemical Oceanography II (3+0)
(Same as Chem. 663)
Selected topics in chemical oceanography, including stable isotope chemistry; chemical equilibria; chemistry of marine biota and their products; interaction of sediments and water; material exchange through sea air interface; marine photosynthesis and special topics of marine biochemistry; chemical technology as applied to oceanography; raw materials and industrial utilization. (Prerequisite: OCN 661, or permission of the instructor.)

OCN 670 3 Credits Spring
Waves and Tides (3+0)
(Same as C.E. 670)
Generation and propagation of waves at sea, theory of waves, wave spectra and forecasting, observation and recording of ocean waves, tsunamis, tides, and internal waves.

OCN 672 3 Credits Fall
Underwater Acoustics (3+0)
(Same as E.E. 672)
Nature of sound, units and standards, sound-related characteristics of sea water, transmission and transmission losses, effect of discontinuities, reverberation, and measurement techniques.

OCN 674 3 Credits Spring
Environmental Hydrodynamics (3+0)
(Same as C.E. and Phys. 674)
Mechanics of fluids on a rotating earth. Navier Stoke's equations, boundary layer phenomena, turbulent flow, and applications of hydrodynamics to motion of stratified fluids such as the atmosphere and ocean.

OCN 676 3 Credits Fall
Coastal Engineering (3+0)
(Same as C.E. 676)
Review of deep and shallow water waves, littoral drift, coastal structures, pollution problems, harbor seiches. (Prerequisite: OCN 670.)

OCN 680 3 Credits Fall-Spring
Ocean Engineering Field Work (3+0)
Field experience either on a vessel or at an ocean engineering site selected by the student in consultation with his graduate committee. Usual duration of the field work is approximately two months.

OCN 690 0 Credits Spring
Colloquium

OCN 691 1 Credit Fall
OCN 692 1 Credit Spring
Seminar

OCN 693 Credits Arr. Fall
OCN 694 Credits Arr. Spring
Special Topics
Course Descriptions

OFFICE ADMINISTRATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Term</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>O.A. 61</td>
<td>3</td>
<td>Fall</td>
<td>Clerical Skills (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Instruction in filing, responsibilities and duties of a clerical worker.</td>
</tr>
<tr>
<td>O.A. 63</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Adding and Calculating Machines (1+2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basic operation of adding, calculating and key punch machines.</td>
</tr>
<tr>
<td>O.A. 65</td>
<td>3</td>
<td>Fall</td>
<td>Machine Transmission (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transcription from various voice-writing machines with special emphasis on spelling, word choice, and grammar.</td>
</tr>
<tr>
<td>O.A. 66</td>
<td>3</td>
<td>Spring</td>
<td>Machine Transmission (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transcription training, with emphasis on mailable material, efficient office routine, setting up letters.</td>
</tr>
<tr>
<td>O.A. 89</td>
<td>8</td>
<td>Spring</td>
<td>Office Practicum (2+10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Same as O.A. 299)</td>
</tr>
<tr>
<td>O.A. 101</td>
<td>4</td>
<td>Fall</td>
<td>Beginning Shorthand (4+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gregg Shorthand, Diamond Jubilee Series. Shorthand writing of practiced material demonstrating all principles; unfamiliar material of short duration.</td>
</tr>
<tr>
<td>O.A. 102</td>
<td>4</td>
<td>Spring</td>
<td>Intermediate Shorthand (4+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intermediate Gregg Shorthand for secretarial students. Reinforce theory principles; emphasis upon speed dictation practice and introduction to transcription practice. (Prerequisite: O.A. 101 or equivalent and ability to type.)</td>
</tr>
<tr>
<td>O.A. 103</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Elementary Typewriting (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beginning course in typewriting with emphasis on correct techniques, development of speed and accuracy, and business use applications; learning to use typewriting as a tool of literacy and communication. Introduction to centering, typing of personal and business letters, envelopes, simple tables and manuscripts, use of carbon paper and methods of error correction.</td>
</tr>
<tr>
<td>O.A. 105</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Intermediate Typewriting (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Speed and accuracy development and application of typewriting skill to special letter problems, tabulations, manuscripts, duplicating and other office typing problems. (Prerequisite: one year of high school typewriting or O.A. 103.)</td>
</tr>
<tr>
<td>O.A. 106</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Advanced Typewriting (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typing of letters with special problems, legal documents, and forms, statistical tabulations, including financial reports, and the problem-solving approach to the completion of various typing problems. Use of the IBM Executive Typewriter (proportional spacing machine). Emphasis on speed, accuracy and office standards. (Prerequisites: O.A. 105 or equivalent and speed of 40 words per minute.)</td>
</tr>
<tr>
<td>O.A. 109</td>
<td>2</td>
<td>Fall-Spring</td>
<td>Magnetic Tape and/or Magnetic Card Selectric Typewriter (1+3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Instruction and practice in the use of the IBM Magnetic Tape Selectric Typewriter, two tape station, and/or Magnetic Card Selectric Typewriter. These machines are electric typewriters with the capacity to record signals on magnetic tape or magnetic card and play back automatically at a rapid speed. (Prerequisites: Ability to use an electric typewriter, speed of 45 words a minute, and knowledge of business-style typing.)</td>
</tr>
<tr>
<td>O.A. 201</td>
<td>3</td>
<td>Fall</td>
<td>Advanced Shorthand (3+1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intensive dictation practice; emphasis on speed building. Theory review with emphasis on highspeed shortcuts and technical vocabulary and transcription techniques. (Prerequisite: O.A. 102 and O.A. 106 or equivalents.)</td>
</tr>
<tr>
<td>O.A. 202</td>
<td>4</td>
<td>Spring</td>
<td>Advanced Dictation and Transcription (4+4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technical and conference editing and reporting; transcription with emphasis on production of mailable copy. Comprehensive review is provided. (Prerequisites: O.A. 101, O.A. 102, 105 and 201. O.A. 201 may be omitted with permission of instructor.)</td>
</tr>
<tr>
<td>O.A. 203</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Office Machines (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basic operation and application of current office machines. (Prerequisite: O.A. 105 or equivalent.)</td>
</tr>
<tr>
<td>O.A. 208</td>
<td>3</td>
<td>Fall-Spring</td>
<td>Machine Transmission and Filing (3+0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Developing proficiency in machine transcription; principles and practical applications of filing. (Prerequisite: O.A. 105 or equivalent.)</td>
</tr>
</tbody>
</table>
Course Descriptions

O.A. 231 3 Credits Fall
Business Communications (3+0)
Applies the techniques of written communications to situations that require problem solving and an understanding of human relations. Emphasis on clarity, accuracy, and effectiveness in composing and evaluating various kinds of communications that commonly pass between a businessman and his associates, customers, and dealers. Included will be inter-office memos, letters, reports. (Prerequisites: Engl. 111 and ability to type.)

O.A. 299 6 Credits Spring
Office Practicum (2+10)
The student is placed in a business office which is related to her educational program and occupational objective for ten hours a week with two additional hours a week in a seminar with the coordinator to deal with any problems encountered on the job or with any remedial work necessary as indicated by the weekly evaluation of the student by the office supervisor. (Prerequisite: Admission by permission of the instructor.)

O.A. 302 3 Credits Spring
Executive Secretarial Procedures (3+0)
Duties, responsibilities and personal qualities of the secretary; human relations in the business office; secretarial training projects that require the application of the various secretarial abilities; intricate office practices in higher level secretarial duties; office ethics. (Prerequisite: junior standing, or by permission of the instructor.)

O.A. 351 1 Credit Fall-Spring
Readings in Office Administration (1+0)
Readings in current problems, practices, procedures, methods. Not more than two credits to be earned by any one student.

O.A. 360 3 Credits Fall-Spring
C.P.S. Coaching (3+0)
Review of current professional literature, a study of material covered in recent C.P.S. examinations, and solving of problems under examination conditions. Guidelines of the course are the requirements for the C.P.S. examination. (Prerequisite: senior standing or permission of the instructor.)

O.A. 408 3 Credits As demand warrants Fall-Spring
Methods of Teaching Business Subjects (3+0)
(Same as Ed. 408)
Organization and content of high school business education courses; equipping a business education department, including selection, care, and maintenance; methods in teaching bookkeeping, typewriting, shorthand, and transcription. (Admission by arrangement. Prerequisites: 100 semester hours, Ed. 332 and prerequisites thereto.)

O.A. 493 Credits Arr. Fall
O.A. 494 Credits Arr. Spring
Special Topics

O.A. 499 6 Credits Spring
Office Practicum (2+10)
Description same as O.A. 299.

PEACE ARTS

Pe.A. 491 Credits Arr. Fall
Pe.A. 492 Credits Arr. Spring
Seminar
An interdisciplinary seminar designed to focus on the nature, causes, and effects of war and the establishment and maintenance of peace. Offered in alternate years; next offered in 1974-75.

PETROLEUM

Pet. 101 3 Credits Fall-Spring
Introduction to the Petroleum Industry (3+0)
A survey of the petroleum industry from exploration through refining. (Prerequisite: freshman standing.)

Pet. 201 3 Credits Fall
Petrophysics (3+0)
Physical properties of reservoir rocks: permeability; relative permeability; surface tension; wettability; porosity; formulation resistivity factor. Properties of petroleum fluids: behavior of gases; solubility of gases; formation volume factor; compressibility; viscosity; phase behavior. (Prerequisite: Math. 106 or consent of instructor.)

Pet. 302 3 Credits Spring
Oil Well Design and Production (3+0)
Fundamental principles underlying the analysis, design and engineering of petroleum production systems. (Prerequisites: Phys. 211, Math. 201 or permission of the instructor.)

Pet. 304 3 Credits Spring
Petroleum Reservoir Engineering (3+0)
Quantitative study and behavior prediction of volumetric and water drive oil and gas reservoirs by material balance. (Prerequisites: Math. 201 and Phys. 212.)
PHILOSOPHY

Phil. 201 3 Credits Fall-Spring
Introduction to Philosophy (3+0)
Terms, concepts, and problems as reflected in writings of great philosophers. (Prerequisites: Sophomore standing and permission of the instructor.)

Phil. 202 3 Credits Spring
Introduction to Eastern Phil. (3+0)
Basic assumptions, problems conclusions of the major philosophical traditions of the Far East. (Prerequisite: Phil. 201 or permission of the instructor.)

Phil. 204 3 Credits Spring
Introduction to Logic (3+0)
Principles of deductive and inductive logic, application of these laws in science and other fields; brief introduction to symbolic logic and its applications. (Prerequisite: Sophomore standing.)

Phil. 205 3 Credits Fall
Aesthetics (3+0)
The nature of aesthetic experience in poetry, music, painting, sculpture and architecture; studies in relation to artistic production and the role of art in society. (Offered in alternate years; next offered in 1973.)

Phil. 332 3 Credits Spring
Ethics (3+0)
Examination of ethical theories and basic issues of moral thought. (Offered in alternate years; next offered in 1974.)

Phil. 341 3 Credits Fall
Epistemology (3+0)
The nature of knowledge, truth and certainty. (Prerequisite: Phil. 201. Offered in alternate years, next offered in 1974.)

Phil. 342 3 Credits Spring
Metaphysics (3+0)
The nature of reality comprising both ontology and cosmology. (Prerequisite: Phil. 201. Offered in alternate years; next offered in 1975.)

Phil. 351 3 Credits Fall
History of Philosophy (3+0)
Ancient and medieval periods. (Prerequisite: six credits in philosophy or social science.)

Phil. 352 3 Credits Spring
History of Philosophy (3+0)
Renaissance, modern and recent periods. (Prerequisite: six credits in philosophy or social science.)

Phil. 401 3 Credits Fall-Spring
Contemporary Philosophical Problems (3+0)
Ideological issues facing the modern world. (Prerequisite: nine credits in philosophy or permission of the instructor.)

Phil. 481 3 Credits Fall
Philosophy of Science (3+0)
Comparison and discussion of various contemporary methodological positions. (Prerequisite: Junior standing.)

Phil. 482 3 Credits Spring
Comparative Religion (3+0)
Seven world faiths represent answers to questions of man's duty, his destiny and his nature. (Prerequisite: Permission of the instructor.)

Phil. 483 3 Credits Spring
Philosophy of Social Science (3+0)
Comparison and analysis of various contemporary methodological positions in the social sciences. (Prerequisite: Junior standing.)

Phil. 484 3 Credits Spring
Philosophy of History (3+0)
Critical examination of the nature of history and historical inquiry. (Prerequisite: nine credits in philosophy or social science.)

Phil. 493 Credits Arr. Fall
Phil. 494 Credits Arr. Spring
Special Topics
Various subjects.

PHYSICAL EDUCATION

P.E. 100 1 Credit Fall-Spring
Physical Education Activities and Instruction (0+3)
Instruction, practice and activity in a variety of physical activities, sports and dance. Prescribed appropriate uniforms required for participation in all activities.

Professional Courses: The courses listed below are primarily for Physical Education majors and minors, but others may be admitted by permission of the instructor.

P.E. 201 2 Credits Fall
Introduction to Health, Physical Education and Recreation (2+0)
A survey course to acquaint students with vocations, academic discipline and programs in health, physical education and recreation.

P.E. 242 3 Credits As demand warrants
Personal and Community Health (3+0)
Development of positive health attitudes; principles and practices of personal and community health.
Course Descriptions

P.E. 248 2 Credits As demand warrants
First Aid (2+0)
Knowledge and skills necessary to provide efficient aid and treatment in emergencies.

P.E. 301 2 Credits Fall
Theory of Coaching Basketball (Men) (2+0)
Methods of coaching and training basketball teams; strategy, methods and psychology of offense and defense.

P.E. 302 2 Credits Fall
Techniques in Physical Education—Track and Field (1+3)
Methods and practice in teaching track and field activities. (Prerequisite: performance-and-knowledge competency in track and field activities.)

P.E. 303 2 Credits Spring
Techniques in Physical Education—Team Sports (1+3)
Methods and practice in teaching team sports and activities. (Prerequisite: performance - and - knowledge competency in certain team sports.)

P.E. 304 2 Credits Spring
Techniques in Physical Education—Winter Sports (1+3)
Methods of teaching skills and coaching teams in snow and ice sports. (Prerequisite: performance - and - knowledge competency in certain ice and snow sports.)

P.E. 305 2 Credits Fall
Techniques in Physical Education—Individual and Dual Sports and Activities (1+3)
Methods and practice in teaching selected individual and dual sports and activities for men and women. (Prerequisite: basic performance - and - knowledge competency in certain individual and dual sports and activities.)

P.E. 308 3 Credits Spring
Physical Education for the Elementary School (2+3)
(Same as Ed. 308)
Philosophy, source, materials, games, rhythms, group activities, and program planning; participation required to gain skills and techniques of teaching activities for elementary grade children. (Prerequisites: Ed. 313 and prerequisites thereto.)

P.E. 311 3 Credits Fall
History and Principles of Physical Education (3+0)
The role of sports and physical education from ancient to contemporary societies, with consideration of principles and philosophy of physical education; overview of biological, psychological, and sociological foundations of physical education. (Prerequisite: P.E. 201.)

P.E. 331 1 Credit Fall-Spring
Practicum in Physical Education (0+3)
Student serves as student-assistant in P.E. 100 class, or obtains an equivalent experience in a local school or recreation program. (Prerequisite: Approval of the department head. May be repeated for a maximum of 4 credits.)

P.E. 332 2 Credits Spring
Intramural Sports (2+0)
Organization, activities and conduct of intramural sports program.

P.E. 400 2 Credits Spring
Techniques in Physical Education—Tumbling and Gymnastics (1+3)
Methods and practice in teaching tumbling and apparatus gymnastics. Separate men’s and women’s sessions. (Prerequisite: Performance - and - skill competency in tumbling and apparatus gymnastics.)

P.E. 406 3 Credits As demand warrants
Methods of Teaching Physical Education (3+0)
(Same as Ed. 406)
Selection of materials and presentation methods for secondary school physical education. (Prerequisites: 100 semester hours. Ed. 332 and prerequisites thereto.)

P.E. 408 2 Credits Spring
Techniques in Physical Education—Aquatics (1+3)
Methods and practice in teaching aquatics skills and sports. (Prerequisite: performance - and - knowledge competency in aquatics.)

P.E. 410 2 Credits Spring
Techniques in Physical Education—Rhythms (1+3)
Methods and practice in teaching rhythmic activities and dance. (Prerequisite: Performance - and - knowledge competency in rhythms.)

P.E. 413 2 Credits Fall
Techniques in Physical Education—Physical Conditioning and Fitness (1+3)
Methods and practice in planning, teaching, and supervising conditioning and fitness activities for men and women. (Prerequisite: performance - and - knowledge competency in physical fitness.)
Course Descriptions

Phys. 209 3 Credits Fall
Fundamentals of Meteorology (3+0)
(Prerequisite: High school algebra or permission of the instructor.)

Phys. 211 4 Credits Fall
Phys. 212 4 Credits Spring
General Physics (3+3)
Classical and modern physics using vector calculus.
(Prerequisite: Math. 200 and Math. 201 taken concurrently; or permission of the instructor.)

Phys. 275 3 Credits Fall
Phys. 276 3 Credits Spring
Astronomy (3+0)
Science elective for the general student. Fall semester: Stellar astronomy, nature of radiation, physical properties and distribution of stars, galactic structure and cosmology. Spring semester: The solar system, laws of motion, the earth, the moon, planets, comets and meteors, cosmogony. Evening demonstrations both semesters. (Prerequisite: Sophomore standing; Phys. 275 not required for 276.)

Phys. 280 1 Credit Fall-Spring
Shop Technique (0+3)
Elements of machine tool operations, welding, soldering, glass blowing, high vacuum technique. Rudiments of apparatus construction. Shop project. Enrollment limited. (Prerequisite: Permission of the instructor. Offered as demand warrants.)

Phys. 281 1 Credit Fall
Phys. 282 1 Credit Spring
Astronomy Laboratory (0+3)
Laboratory experiments in gravitation, geometric optics, physical optics, radiometry, photoelectricity, spectrophotometry and spectroscopy illustrating and supplementing Phys. 275, 276. (Prerequisite: Sophomore standing. Phys. 281 not required for 282. Offered as demand warrants.)

Phys. 301 3 Credits Fall
Phys. 302 3 Credits Spring
Applied Physics (2+3)
Applied physics for non-majors. Electronics, atomic structure and spectra, nuclear structure and reactions. (Prerequisite: Math. 106 or 122. Offered as demand warrants.)

Phys. 311 4 Credits Fall
Phys. 312 4 Credits Spring
Phys. 313 4 Credits Fall
Classical Physics (4+0)
Mechanics, thermodynamics and statistical physics,
Course Descriptions

fluid physics, and geometrical optics. (Prerequisites: Phys. 311 and 312 are offered in years alternate with 313.)

Phys. 331 3 Credits Fall
Phys. 332 3 Credits Spring
Electromagnetism (3+0)

Electrostatics, dielectrics, magnetostatics, magnetic materials, electromagnetism. Maxwell's equations, electromagnetic waves, radiation, physical optics and selected topics from electronics. (Prerequisites: Phys. 212 and Math. 202.)

Phys. 351 3 Credits Fall
Introduction to Meteorology (3+0)
A mathematical treatment of atmospheric thermodynamics and basic equations of motion. The principles of thermodynamics are applied to the atmospheric system in the theoretical considerations as well as in practical applications. (Prerequisites: Math. 201, Math. 202 taken concurrently. Offered as demand warrants.)

Phys. 381 2 Credits Fall
Phys. 382 2 Credits Spring
Physics Laboratory (0+6)
Laboratory experiments in classical and modern physics (Prerequisite: permission of the instructor. Phys. 381 and 382 offered in years alternate with Phys. 481 and 482.)

Phys. 411 4 Credits Fall
Phys. 412 4 Credits Spring
Modern Physics (4+0)
Relativity, elementary particles, quantum theory, atomic and molecular physics, x-rays, and nuclear physics. (Prerequisites: Phys. 212 and Math. 302 or permission of the instructor. Offered in alternate years.)

Phys. 445 3 Credits Spring
Solid State Physics and Physical Electronics (3+0)
Theory of matter in the solid state and the interaction of matter with particles and waves. (Prerequisites: Phys. 212, Math. 302 and Math. 314; or permission of the instructor. Offered in alternate years.)

Phys. 485 3 Credits Fall-Spring
Meteorology (3+0)

Instruments and observations. Introduction to mechanics and thermodynamics of the atmosphere. Weather analysis and forecasting. (Prerequisites: Phys. 104, 106 or 212; Math. 202. Offered as demand warrants.)

Phys. 481 2 Credits Fall
Phys. 482 2 Credits Spring
Advanced Physics Laboratory
Advanced laboratory experiments in classical and modern physics. (Prerequisite: permission of instructor. Phys. 481 and 482 are offered in years alternate with Phys. 381 and 382.)

Phys. 491 Credits Arr. Fall
Phys. 492 Credits Arr. Spring

Physics Seminar
Seminar courses in various topics selected according to needs and interests of students. Primarily for physics majors. (Prerequisite: Permission of the instructor.)

Phys. 493 Credits Arr. Fall
Phys. 494 Credits Arr. Spring
Special Topics
Various subjects. (Admission by arrangement.)

Phys. 603 3 Credits Fall
Phys. 604 3 Credits Spring
Introduction to Geophysics (3+0)
(Same as Geol. 603)
A survey of selected topics in the planetary sciences, including introductory material in each of the major research subject areas in geophysics. 603 covers earth science and 604 covers atmospheric and space science. (Offered as demand warrants.)

Phys. 611 3 Credits Fall
Phys. 612 3 Credits Spring
Mathematical Physics (3+0)
(Same as Math. 611-612)
Advanced consideration of such topics as transform methods, asymptotic methods, Green's function, Sturm-Liouville Theory, conformal mapping, and calculus of variations with applications to problems arising in physics. (Prerequisites: Math. 320 or 406 and permission of the instructor. Offered as demand warrants.)

Phys. 620 3 Credits Fall
Introduction to Physical Oceanography (3+0)
(Same as OCN 620 and Geol. 620)
Physical description of the sea, physical properties of sea water, methods and measurements, boundary processes, currents, tides and waves, regional oceanography. (Prerequisite: science or engineering degree, or permission of the instructor.)

Phys. 681 3 Credits Fall
Classical Mechanics (3+0)
Lagrange's equations, two-body problem, rigid body motion, special relativity, canonical equations, transformation theory and Hamilton-Jacobi method. (Admission by arrangement. Offered in alternate years.)

Phys. 692 3 Credits Spring
Statistical Mechanics (3+0)
Classical and quantum statistics of independent
particles, ensemble theory, and applications. (Admission by arrangement. Offered in alternate years.)

Phys. 628 3 Credits Spring Magnetohydrodynamics and Plasma Physics (3+0)
Fundamental equations of magnetohydrodynamics and magnetic hydrodynamic waves. Invariants of the motion of a charged particle in a magnetic field. Dynamics of a plasma, plasma waves. (Admission by arrangement. Offered as demand warrants.)

Phys. 627 3 Credits Fall-Spring Plasma Physics (3+0)
Wave propagation in hot, homogeneous plasmas; loss cone instabilities; advanced particle orbit theory; wave phenomena and instabilities in inhomogeneous plasmas with complex geometries including drift and flute modes; quasi-linear theory and plasma disturbance. (Offered as demand warrants. Admission by arrangement.)

Phys. 631 3 Credits Fall Electromagnetic Theory (3+0)
Electrostatics, magnetostatics, Maxwell's equations, and potentials. Lorentz equations, field energy, gauge conditions, retarded potentials, waves, radiation, tensor formulations, and non-Maxwellian electrodynamics. (Admission by arrangement. Offered in alternate years.)

Phys. 632 3 Credits Spring Radio Physics (3+0)
Selected topics from ionospheric absorption, diffraction, and scattering of radio waves. (Admission by arrangement. Offered as demand warrants.)

Phys. 642 3 Credits Fall-Spring Physical Properties of Snow, Ice and Permafrost (3+0)
Physical properties of snow, ice and permafrost developed from the principles of solid state physics. Special emphasis on ice in natural systems, e.g., sea ice, and review of current research literature. Topics include structure, bonding, freezing process, crystal growth, mechanical, thermal, optical and electrical properties of these materials.

Phys. 651 3 Credits Fall Quantum Mechanics (3+0)
Schrödinger's equations, operator formalism, correspondence principle, central force problems, perturbation theory, quantum-statistic mechanics and applications of quantum mechanics to collision problems, radiation and spectroscopy. (Admission by arrangement. Offered in alternate years.)

Phys. 657 3 Credits Fall Seismology (3+0)
(Same as Geol. 657, 658)
Propagation of elastic waves in layered media. (Admission by arrangement. Offered as demand warrants.)

Phys. 660 3 Credits Fall-Spring Theoretical Geophysics (3+0)
(Same as Geol. 660)
Selected topics in theoretical geophysics, mainly in solid earth physics, seismology, and geomagnetism. (Admission by arrangement. Offered as demand warrants.)

Phys. 661 2 Credits Spring Physics and Chemistry of the Upper Atmosphere (2+0)

Phys. 663 2 Credits Spring The Geomagnetic Field (2+0)
The main field at the earth's surface. Spherical harmonic analysis; the field within the earth; the field outside the earth; the secular magnetic variation; paleomagnetism; the dynamo theory of the field and its secular variation; distortion of the outer field by electric currents associated with magnetic disturbance. (Admission by arrangement. Offered as demand warrants.)

Phys. 664 2 Credits Fall-Spring Geomagnetic Disturbance and the Aurora (2+0)
The morphology, statistics, solar and ionospheric associations of magnetic disturbances; indices of disturbance; auroral phenomena; theories of magnetic disturbance and the aurora. (Admission by arrangement. Offered as demand warrants.)

Phys. 665 3 Credits Fall-Spring Advanced Meteorology (3+0)
Atmospheric statics, thermodynamics, radiation, and dynamics; atmospheric turbulence; general circulation; perturbation theory. (Admission by arrangement. Offered as demand warrants.)

Phys. 667 3 Credits Fall-Spring Theoretical Astrophysics (3+0)
Radiative transfer and stellar hydrodynamics; theory of continuous and line spectrum from stellar atmospheres; solar photosphere, chromosphere and corona.

Course Descriptions

Phys. 657 3 Credits Fall
Phys. 658 3 Credits Spring
Seismology (3+0)
(Same as Geol. 657, 658)
Propagation of elastic waves in layered media. (Admission by arrangement. Offered as demand warrants.)

Phys. 660 3 Credits Fall-Spring
Theoretical Geophysics (3+0)
(Same as Geol. 660)
Selected topics in theoretical geophysics, mainly in solid earth physics, seismology, and geomagnetism. (Admission by arrangement. Offered as demand warrants.)

Phys. 661 2 Credits Spring
Physics and Chemistry of the Upper Atmosphere (2+0)

Phys. 663 2 Credits Spring
The Geomagnetic Field (2+0)
The main field at the earth's surface. Spherical harmonic analysis; the field within the earth; the field outside the earth; the secular magnetic variation; paleomagnetism; the dynamo theory of the field and its secular variation; distortion of the outer field by electric currents associated with magnetic disturbance. (Admission by arrangement. Offered as demand warrants.)

Phys. 664 2 Credits Fall-Spring
Geomagnetic Disturbance and the Aurora (2+0)
The morphology, statistics, solar and ionospheric associations of magnetic disturbances; indices of disturbance; auroral phenomena; theories of magnetic disturbance and the aurora. (Admission by arrangement. Offered as demand warrants.)

Phys. 665 3 Credits Fall-Spring
Advanced Meteorology (3+0)
Atmospheric statics, thermodynamics, radiation, and dynamics; atmospheric turbulence; general circulation; perturbation theory. (Admission by arrangement. Offered as demand warrants.)

Phys. 667 3 Credits Fall-Spring
Theoretical Astrophysics (3+0)
Radiative transfer and stellar hydrodynamics; theory of continuous and line spectrum from stellar atmospheres; solar photosphere, chromosphere and corona.
Course Descriptions

(Admission by arrangement. Offered as demand warrants.)

Phys. 671 2 Credits Fall-Spring
Space Physics (3+0)
Radiation belts, motions and magnetic fields of trapped particles, geomagnetic storm effects and primary auroral particles. (Admission by arrangement. Offered as demand warrants.)

Phys. 674 3 Credits Spring
Environmental Hydrodynamics (3+0)
(Same as OCN 674 and C.E. 674)
Mechanics of fluids on a rotating earth. Navier Stoke's equations, boundary layer phenomena, turbulent flow, and applications of hydrodynamics to motion of stratified fluids such as the atmosphere and ocean.

Phys. 675 3 Credits Fall-Spring
Radio Astronomy (3+0)
Survey of instruments and techniques, radio wave generation and propagation in ionized media, solar radio waves, cosmic radio waves, effects of the troposphere on extra-terrestrial radio waves, radar astronomy. (Admission by arrangement. Offered as demand warrants.)

Phys. 677 Credits Arr. Fall
Phys. 678 Credits Arr. Spring
Atomic and Molecular Processes
Selected topics in collision theory, radiation theory, atomic and molecular structure and reactions, and experimental techniques of atomic and molecular physics. (Admission by arrangement. Offered as demand warrants.)

Phys. 690 0 Credits Fall-Spring
Colloquium

Phys. 691 Credits Arr. Fall
Phys. 692 Credits Arr. Spring
Seminar
Various topics. (Admission by arrangement.)

Phys. 693 Credits Arr. Fall
Phys. 694 Credits Arr. Spring
Special Topics
Special topics given by staff or visiting scholars in subjects of current interest. At least one course is offered each semester.

Phys. 697 Credits Arr. Fall
Phys. 698 Credits Arr. Spring
Thesis or Dissertation

POLICE ADMINISTRATION

P.A. 110 3 Credits Fall
Introduction to Criminal Justice (3+0)
A study of the agencies and processes involved in the criminal justice system — the legislature, the police, the prosecutor, the courts and corrections. An analysis of the role and the problems of law enforcement in a democratic society.

P.A. 150 3 Credits Fall-Spring
Police Administration (3+0)
Principles of police administration and organization as applied to staff and line units. An analysis of their functions and activities, including record keeping, report writing, and the application of the computer. Offered in alternate years.

P.A. 151-C 3 Credits Fall-Spring
Introduction to Criminology (Correspondence Study Only)
Study of the major areas of deviant behavior and relationship to society, law and law enforcement.

P.A. 154-C 3 Credits Fall-Spring
Patrol Procedures (Correspondence Study Only)
Responsibilities, techniques, and methods of police work; computer orientation.

P.A. 159-C 3 Credits Fall-Spring
Organization, Management & Administration (Correspondence Study Only)
An integrated study of the composition and functions of organizations, principles and problems of management and supervision; the role of administrator, including report writing.

P.A. 251 3 Credits Fall-Spring
Criminology (3+0)
The study of the major areas of deviant behavior and its relationship to society, law, and law enforcement, including the theories of crime causation. (Prerequisite: Soc. 101.)

P.A. 252 3 Credits Fall
Criminal Law (3+0)
A study of the elements, purposes, and functions of the substantive criminal law; with emphasis upon historical and philosophical concepts.

P.A. 254 3 Credits Spring
Procedural Law (Criminal Procedure) (3+0)
Emphasis upon the legal limitations of the police and the right of the people to be secure from the government under the protections of the Constitution and the Rules of Evidence.
Political Science

P.A. 255 3 Credits Fall-Spring
Criminal Investigation (3+0)
Fundamentals of investigation; crime scene search and recording; collection and preservation of physical evidence; scientific aids; modus operandi; sources of information; interviews and interrogation; follow-up and case preparation. (Offered in alternate years.)

P.A. 257 3 Credits Fall-Spring
Traffic Safety (3+0)
A study of traffic hazards and theoretical and practical aspects of traffic safety programs such as vehicle and highway design, regulation and control, education and enforcement. (Offered in alternate years.)

P.A. 258 3 Credits Fall-Spring
Juveniles and the Law (3+0)
The role of agencies under the law in regard to the juvenile, with special attention to the role of law enforcement. Both theoretical and practical aspects will be studied. (Offered in alternate years.)

P.A. 259 3 Credits Fall-Spring
Administrative Concepts (3+0)
Exposition of basic theory; principles and practices of public administration, especially as it applies to municipal agencies. Theoretical aspects of factors such as policy-formation and decision-making in a public agency. (Offered in alternate years.)

Political Science

P.S. 101 3 Credits Fall
Introduction to American Government and Political Science (3+0)
Survey of American government, political processes, and contemporary issues, focusing on national institutions. Distribution and uses of power and the role of political values and beliefs. The constitution and federalism; interest groups, parties, and elections; Congress, the Executive, and the courts.

P.S. 201 3 Credits Fall
Comparative Politics: Methods of Political Analysis (3+0)
Modern methods of analyzing political behavior and processes on a cross-national basis; emphasis is placed on the roles of executive, legislative and judicial systems, political parties and pressure groups, and current concepts of political development. Special application is made to three democratic European countries.

P.S. 332 3 Credits Fall-Spring
International Law and Organization (3+0)
Development, structure, policies and problems of public international law and organizations. Accomplishments and limitations of universal and regional organizations and law.
Course Descriptions

P.S. 342 3 Credits Fall-Spring
Contemporary China (3+0)
Historical perspective; communism's rise to power; sino-soviet relations, the cultural revolution, significance of Maoism; a case study in comparative political analysis.

P.S. 361 3 Credits Fall-Spring
Latin American Governments and Politics (3+0)
A survey of Latin American political structures and processes emphasizing executive, legislative and judicial systems; political parties and pressure groups; political activities of students, labor unions and agricultural workers' groups; plus consideration of class conflicts, militarism and church-state problems.

P.S. 401 3 Credits Fall
P.S. 402 3 Credits Spring
Political Behavior (3+0)
Behavior of political organizations, parties, groups, politicians and individual citizens. (Prerequisites: P.S. 101-102.)

P.S. 411 3 Credits Fall
P.S. 412 3 Credits Spring
Political Theory (3+0)
Ancient, classical, medieval and modern political concepts, and their effects on political behavior.

P.S. 415 3 Credits Fall-Spring
Recent Political Thought (3+0)
A discussion of the contributions of modern thinkers to political theory.

P.S. 435 3 Credits Fall
Introduction to Constitutional Law (3+0)
Growth and development of the United States Constitution as reflected in decisions of the Supreme Court. Federal system; executive, legislative and judicial powers; nature of the judicial process; regulation of commerce, taxation. (Prerequisite: P.S. 101.)

P.S. 436 3 Credits Spring
The Courts and Civil Liberties (3+0)
Origin and development of civil and political liberties; responsibility of the branches of government and the people for their maintenance. Cases and literature bearing on protection of constitutionally guaranteed rights with particular reference to the period since 1937. (Prerequisites: P.S. 101 and P.S. 435.)

P.S. 475 3 Credits Fall-Spring
Internship in Public Affairs (3+0)
Designed to give carefully selected undergraduates and/or graduates the opportunity to do practical and meaningful work with governmental agencies or civic action groups. Admission by permission of the instructor.

P.S. 491 Credits Arr. Fall
P.S. 492 Credits Arr. Spring
Seminar

P.S. 493 Credits Arr. Fall
P.S. 494 Credits Arr. Spring
Special Topics

PSYCHOLOGY

Psy. 101 3 Credits Fall-Spring
Introduction to Psychology (3+0)

Psy. 201 3 Credits Fall
Advanced General Psychology (3+0)
The theory and methods of psychology including the scope and limitations of the science. Major emphasis in the areas of experimental, statistical, physiological, clinical, and social analysis of behavior. (Prerequisite: Psy. 101.)

Psy. 210 1 Credit As demand warrants
Advanced Group Experience Laboratory (0+2)
Designed for individuals with previous group laboratory experience. An experiential and didactic approach to the resolution of personal and educational concern with emphasis on the techniques of psychodrama, Gestalt therapy and group encounter. Responsibility for behavior, patterns of interpersonal communication, and awareness of feelings will be explored.

Psy. 244 3 Credits Spring
Early Childhood Development (2+3)
(Same as H.E. 245)
Introduction to the physical, social, affective and cognitive development of young children from birth to six years of age. (Prerequisite: Psy. 101.)

Psy. 245 3 Credits Fall-Spring
Child Development (2+3)
(Same as H.E. 245)
Theory and laboratory of human mental emotional, social, and physical development. (Prerequisites: Psy. 101, 45 semester hours, and permission of the instructor.)

Psy. 246 3 Credits Fall-Spring
Adolescence (2+3)
(Same as Soc. 246)
Intellectual, emotional, social and physical
PsY. 251 3 Credits Fall-Spring
Introductory Statistics for Behavioral Sciences (3+0)
(Same as Soc. 251)
Introduction to the purposes and procedures of statistics; calculating methods for the description of groups (data reduction) and for simple inferences about groups and differences between group means. (Prerequisite: Psy. 201.)

PsY. 261 3 Credits Fall
Introduction to Experimental Psychology (2+3)
Introduction to and laboratory application of the experimental methods to some problems of psychology using both human and animal subjects. (Prerequisite: Psy. 201, 251. Psy. 251 and 261 may be taken concurrently.)

PsY. 301 3 Credits Fall
History and Systems of Psychology (3+0)
Development of psychological thought with an emphasis on experimental and theoretical areas from the early Greeks to the present. (Prerequisite: Psy. 201.)

PsY. 302 3 Credits Spring
Social Psychology (3+0)
(Identical to Psy. 302)
An analysis of inter-group relationships in terms of process and value orientation, their influences on the personality, and the various aspects of collective behavior on group and person. (Prerequisite: Psy. 201, Soc. 101-102.)

PsY. 331 3 Credits Fall
Industrial Psychology (3+0)
Job and worker analysis, selection, training, fatigue, worker adjustment, morale, labor-management relations. (Prerequisite: Psy. 201.)

PsY. 338 3 Credits Spring
Abnormal Psychology (3+0)
Abnormalities of human behavior. (Prerequisite: Psy. 201.)

PsY. 362 3 Credits Spring
Intermediate Experimental Psychology (2+3)
Training in the design, instrumentation, and execution of experiments with human and animal subjects. Major emphasis in the areas of learning, motivation, and perception. (Prerequisites: Psy. 201, 261.)

PsY. 373 3 Credits Fall
Psychological Testing (3+0)
Standardized psychological tests in various applied areas; administration, scoring, and interpretation of established tests. (Prerequisites: Psy. 201, 251, 261.)

PsY. 406 3 Credits Spring
Theories of Personality (3+0)
Current psychological theories, with a critical examination of the different approaches used in theory construction. (Prerequisites: Psy. 201, 338.)

PsY. 407 3 Credits Fall
Motivation (3+0)
Survey of theory and research on reinforcement, punishment, frustration, preference, instinctual mechanisms, and other factors "controlling" the performance of organisms. (Prerequisites: Psy. 201, 261. Offered alternate years, next in 1975.)

PsY. 433 3 Credits Spring
Clinical Psychology (3+0)
Elementary course in methods of clinical psychology with consideration of psychological assessment and psychological approaches to treatment. (Prerequisite: Psy. 201. Offered alternate years. Next offered 1975.)

PsY. 464 3 Credits Spring
Learning (3+0)
A study of the major theories of conditioning and learning, and a survey of current literature concerning classical conditioning and instrumental learning in humans and animals. (Prerequisites: Psy. 201, 261.)

PsY. 465 3 Credits Fall
Comparative and Physiological Psychology (3+0)
An introduction to physiological, chemical, and neural principles basic to human and animal behavior. Review of current literature in the field. (Prerequisites: Psy. 201, 261. It is recommended that Biol. 107-108 be taken prior to Psy. 465. Offered alternate years; next offered 1974.)

PsY. 466 3 Credits Spring
Perception (3+0)
Current literature and theoretical models of perception emphasizing the physiological, developmental, and social effects on interpretation of sensory processes. (Prerequisites: Psy. 201, 261. Offered alternate years; next offered 1975.)

PsY. 73 3 Credits Fall
Social Science Research Methods (3+0)
(Identical to Soc. 473)
Techniques of social research: sampling, questionnaire construction, interviewing and data analysis in surveys;
Course Descriptions

field and laboratory experiments; attitude scaling. (Prerequisites: Psy. 251 and prerequisites thereto.)

Psy. 492 2 Credits As demand warrants
Seminar in Human Behavior (3+0)
(Same as Soc. 492)
Integrated behavioral approach emphasizing the major sociological and psychological theories with special attention to current literature. (Prerequisite: Senior standing in psychology or sociology.)

Psy. 493 Credits Arr. .Fall
Psy. 494 Credits Arr. Spring
Special Topics
Various subjects. (Admission by arrangement.)

Psy. 623 3 Credits As demand warrants
Principles of Individual Counseling (3+0)
(Same as Ed. 623)
Counseling techniques and procedures in education, social work, and on a limited basis, clinical psychology; their applications by the classroom teacher and guidance specialist in assisting students with adjustment problems within a normal range. (Prerequisites: Ed. 428, Psy. 338 or 406 and permission of the instructor.)

Psy. 624 3 Credits As demand warrants
Group Counseling (3+0)
(Same as Ed. 624)
Kinds and types of groups with emphasis on methods, problems and needed skills in working with groups in a counseling situation. (Prerequisites: Ed. 428, 623.)

Psy. 625 3 Credits As demand warrants
Analysis of the Individual (3+0)
(Same as Ed. 625)
Means of acquiring data pertinent to the individual. Interpreting data and formulating case reports conducive to greater understanding. (Prerequisite: Ed. 428.)

Psy. 629 3 Credits As demand warrants
Individual Tests of Intelligence (3+0)
(Same as Ed. 629)
Individual intelligence tests with emphasis on the Revised Stanford-Binet Intelligence Scale and the Wechsler Intelligence Scales. (Prerequisites: Ed. 332 and permission of the instructor.)

Psy. 630 3 Credits As demand warrants
Laboratory in Individual Tests of Intelligence (6+9)
(Same as Ed. 630)
Provides laboratory experience in administration of the Revised Stanford-Binet Intelligence Scale and the Wechsler Intelligence Scales. (Prerequisites: Ed. 629 and permission of the instructor.)

Psy. 632 3 Credits As demand warrants
Occupational Information (3+0)
(Same as Ed. 633)
Principles and practices of vocational guidance. Explains process of choosing a vocation, theories of vocational choice, sources and dissemination of occupational information. (Prerequisites: graduate standing, Ed. 428, and permission of the instructor.)

Psy. 634 1-3 Credits Arranged
Counseling Practicum
(Same as Ed. 634)
Provides supervised field experience, including preparatory activities in an educational and agency setting. (Prerequisite: Approval of instructor. May be repeated for a maximum of 6 credits.)

Psy. 697 Credits Arr. Fall
Psy. 698 Credits Arr. Spring
Thesis

RUSSIAN

Russ. 101 5 Credits Fall
Russ. 102 5 Credits Spring
Elementary Russian (5+0)
Development of the four skills (listening comprehension, speaking, reading, and writing) with emphasis on oral work, practice in the language laboratory, basic grammar, and vocabulary.

Russ. 111 3 Credits Fall
Russ. 112 3 Credits Spring
Russian for Reading Ability (3+0)
Rapid acquisition of reading knowledge with attention to needs in specialized fields. Credit applicable to degrees requiring one year of a foreign language with emphasis on reading skill. (Offered as demand warrants.)

Russ. 201 4 Credits Fall
Russ. 202 4 Credits Spring
Intermediate Russian (4+0)
Continuation of Russ. 102. Increasing emphasis on reading ability and cultural materials. Conducted in Russian. (Prerequisite: Russ. 102 or two years of high school Russian.)

Russ. 301 3 Credits Fall
Russ. 302 3 Credits Spring
Advanced Russian (3+0)
Discussions and essays on more difficult subjects or texts; translations, stylistic exercises, special grammatical problems; systematic vocabulary building. Conducted in Russian. (Prerequisite: Russ. 202 or instructor's permission. Next offered 1975-76.)
Sociology

Choice of authors, genres, or periods of Russian literature for intensive study. Conducted in Russian. (Prerequisite: Russ. 202 or equivalent. Students may repeat course for credit when topic varies. Next offered 1973-74.)

Russ. 351 3 Credits Fall

The Russian Novel (3+0)
The Russian novel of the nineteenth and twentieth centuries. Study of novels by Pushkin, Lermontov, Gogol, Turgenev, Dostoevsky and Solzhenitsyn. A lecture course conducted in Russian. (Prerequisite: Russ. 202 or equivalent. Next offered 1974-75.)

Russ. 362 3 or 4 Credits Spring

Russian Drama (3+0)
in English Translation
A survey of Russian drama from its origin in folk tradition up to and including plays of the Soviet period. Emphasis will be on dramatists of the 18th, 19th and 20th centuries. Lectures and readings will be in English. For Russian majors and/or interested students with a knowledge of Russian, an extra unit of credit will be offered. Students will be required to read plays in Russian. Weekly meetings will be scheduled to discuss (in Russian) the linguistic and stylistic aspects of the plays covered in the lectures. (Prerequisites: Russ. 202 or equivalent. Next offered 1974-75.)

Russ. 493 Credits Arr. Fall

Russ. 494 Credits Arr. Spring

Special Topics
Various subjects for advanced students. (Admission by arrangement. Offered as demand warrants.)

Sociology

Soc. 101 3 Credits Fall-Spring

Introduction to Sociology (3+0)
An introduction to the science of man as a social animal, emphasizing the social processes which give rise to and shape man's language, experiences, perception, meaning and behavior. An attempt is made to construct an interaction framework to be used in understanding and predicting human behavior.

Soc. 102 3 Credits Fall-Spring

Introduction to Sociology (3+0)
A continuation of Soc. 101. (Prerequisite: Soc. 101.)

Soc. 106 3 Credits Fall-Summer

Social Welfare (3+0)
Functions and development of modern social welfare and the distinctive features of the field, designed primarily to assist in the understanding of social welfare problems and services. (Prerequisite: Soc. 101.)

Soc. 201 3 Credits Fall

Social Problems (3+0)
Problems of contemporary society; analysis of factors giving rise to them. (Prerequisites: Soc. 101, 102.)

Soc. 205 3 Credits Fall

Group Processes in Modern Society (3+0)
Formation, structure and functioning of groups; group processes and group products; implications of various research techniques. (Prerequisites: Soc. 101, 102.)

Soc. 207 3 Credits Fall

Population and Ecology (3+0)
Analysis of world populations, growth and decline patterns, migratory trends, and ecology. Critical review of major theoretical contributions with introduction to demographic methods. (Prerequisites: Soc. 101 or permission of instructor.)

Soc. 219 3 Credits Fall

Black Americans in Contemporary Society (3+0)
An examination and analysis of the black subculture in the United States with special attention to: the historical overview, theoretical applications, and consideration of alternatives.

Soc. 242 3 Credits Spring

The Family (3+0)
A study of the contemporary patterns of marriage and family relationships in the U.S.A. Social psychological approach to factors associated with the life cycle of the family, including mate selection, marital interaction and adjustment, parent-child relationships, and the later years of married life. (Prerequisites: Soc. 101, 102.)

Soc. 246 3 Credits Fall-Spring

Adolescence (2+3)
(Same as Psy. 246)
Intellectual, emotional, social and physical development patterns during the adolescent years. Laboratory arranged for observations of adolescents in a variety of settings, including public schools. (Prerequisites: Psy. 201, 45 semester hours, and permission of the instructor. Soc. 101 is recommended prior to Soc. 246.)

Soc. 251 3 Credits Fall-Spring

Introductory Statistics for Behavioral Sciences (3+0)
(Same as Psy. 251)
Introduction to the purposes and procedures of statistics; calculating methods for the description of groups (data reduction) and for simple inferences about groups and differences between group means. (Prerequisite: Soc. 101.)
Course Descriptions

Soc. 302 3 Credits Spring
Social Psychology (3+0)
(Same as Psy. 302)
An analysis of inter-group relationships in terms of
process and value orientation, their influences on the
personality, and the various aspects of collective
behavior on group and person. (Prerequisites: Psy. 201
or Soc. 101, 102.)

Soc. 304 3 Credits Spring
Culture and Personality (3+0)
An examination of cultural value systems and social
institutions as they bear on the formation of personality.
Types of behavior patterns relevant to personality
formation. (Prerequisites: Soc. 101, 102.)

Soc. 307 3 Credits Fall
Population Problems (3+0)
The demographic structure of population and its
implications. (Prerequisite: Soc. 101.)

Soc. 309 3 Credits Fall
Urban Sociology (3+0)
Growth and development of urban communities with
reference to migration patterns, differentiation of
functions, ecological patterns of land use, social
control, secondary group associations of metropolitan
magnitude. (Prerequisites: Soc. 101, 102.)

Soc. 310 3 Credits Spring
Sociology of Later Life (3+0)
A comparative analysis of the social status and role of
the aging in various societies with emphasis on
problems of aging in contemporary U.S. (Prerequisites:
Soc. 101, 102. Offered in alternate years; next offered
1975.)

Soc. 333 3 Credits Fall
Social Welfare as a Social Institution (3+0)
Historical development and survey of social services
and social work practice as these affect human needs:
economic security, child welfare, family service
programs, health agencies, correctional agencies,
community organization programs. (Prerequisites: Soc.
101, 102, 201.)

Soc. 336 3 Credits Spring
Social Work Methods (3+0)
The scope and principles of modern social work.
Description of the three major methods of social work;
casework, group work, and community organization.
Preparation for further study in the field and for
preliminary work in it. (Prerequisites: Psy. 101, Soc.
333, or permission of the instructor.)

Soc. 343 3 Credits Fall
Sociology of Deviant Behavior (3+0)
A study of the social etiology of deviant behavior, both
criminal and noncriminal with an emphasis on the
nature of group interaction, and an examination of the
institutions involved. (Prerequisites: Soc. 101, 102.)

Soc. 345 3 Credits Fall
Sociology of Education (3+0)
(Same as Ed. 345)
Impact of culture on schools. Examination of
contemporary social trends and relationships among
church, school, government, and family. (Prerequisite:
Soc. 101.)

Soc. 347 3 Credits Fall
Sociology of Religion (3+0)
The study of the historical development and functional
significance of religion, values, and norms of
institutions, groups and reform movements and their
influence on social organization. (Prerequisites: Soc.
101, 102. Offered alternate years; next offered 1974.)

Soc. 363 3 Credits Fall
Social Stratification (3+0)
The study of the differential distribution of social
power, privilege and life chances in class and caste as
the basis for social organization. Emphasis on
occupational, educational and other correlates which
determine social structure. (Prerequisites: Soc. 101,
102.)

Soc. 383 3 Credits Fall-Spring
Field Observation (To be Arranged)
Introduction to the services of community agencies to
provide a better understanding of the role and
programs of social agencies and their services. It is
designed to assess the students' interest in and
motivation for a career in the social services. The
serious student can obtain credit for two semesters' work
in this course. Four to six hours a week in
approved social agencies. (Prerequisites: Soc. 336 or
concurrently with Soc. 336 and permission of the
instructor.)

Soc. 402 3 Credits Spring
Theories of Sociology (3+0)
Major sociological theories and theorists of Western
civilization; review of important contributions and
approaches of various "national schools" with emphasis
on current American and European trends. (Prerequisite: Psy. 302 or Soc. 302.)

Soc. 405 3 Credits Fall
Social Change (3+0)
Social change in long-time perspective, with emphasis
on social movements and the influence of technology.
(Prerequisites: Soc. 101, 102.)

Soc. 406 3 Credits Spring
Human Ecology (3+0)
Modern industrial and centralized society; institutional
structure of community life — political, economic, religious — with reference to internal structure and external sources of control and domination, with some emphasis on the nature of ruralism. (Prerequisites: Soc. 101, 102. Offered alternate years; next offered 1975.)

Soc. 407 3 Credits Spring
Formal Organizations (3+0)
Theory and analysis of large-scale, complex, modern organizations, their coordination, role and status interrelationships, and their publics. (Prerequisite: Soc. 101.)

Soc. 408 3 Credits Spring
American Minority Groups (3+0)
Present status of ethnic, religious and national minorities and their changing sociological, economic, and political status.

Soc. 473 3 Credits Fall
Social Science Research Methods (3+0)
(Same as Psy. 473)
Techniques of social research; sampling, questionnaire construction, interviewing and data analysis in surveys; field and laboratory experiments; attitude scaling. (Prerequisite: Psy. 251 or Soc. 251.)

Soc. 492 2 Credits Spring
Seminar in Human Behavior (2+0)
Integrated behavioral approach emphasizing the major sociological and psychological theories with special attention to current literature. (Prerequisite: Senior standing in psychology or sociology.)

Span. 101 5 Credits Fall
Span. 102 5 Credits Spring
Elementary Spanish (5+0)
Development of the four skills (listening comprehension, speaking, reading, and writing) with emphasis on oral work, practice in the language laboratory, basic grammar, and vocabulary.

Span. 201 4 Credits Fall
Span. 202 4 Credits Spring
Intermediate Spanish (4+0)
Continuation of Span. 102. Increasing emphasis on reading ability and cultural material. Conducted in Spanish. (Prerequisite: Span. 102 or two years of high school Spanish.)

Course Descriptions

Span. 301 3 Credits Fall
Span. 302 3 Credits Spring
Advanced Spanish (3+0)
Discussions and essays on more difficult subjects or texts, translations, stylistic exercises, special grammatical problems, systematic vocabulary building. Conducted in Spanish. (Prerequisite: Span. 202 or equivalent. Next offered 1974-75.)

Span. 313 3 Credits Fall
Span. 314 3 Credits Spring
Spanish Civilization (3+0)
History, development of the arts and of national institutions; extensive reading and classroom discussion. Conducted in Spanish. (Prerequisite: Span. 202. Next offered 1974-75.)

Span. 321 3 Credits Fall
Span. 322 3 Credits Spring
Studies in Spanish Literature (3+0)
Choice of authors, genres, or periods of Spanish literature for intensive study. Conducted in Spanish. Students may repeat course for credit when topic varies. (Prerequisite: Span. 202 or equivalent. Next offered 1975-76.)

Span. 437 3 Credits Fall
Literature of the Golden Age (3+0)
Close study of outstanding literary works in different genres. Conducted in Spanish. (Next offered 1975-76.)

Span. 447 3 Credits Fall
20th Century Literature (3+0)
Analysis primarily of the post-war novel and poetry. (Next offered 1973-74.)

Span. 448 3 Credits Spring
Spanish American Literature (3+0)
Critical reading of selected literary works and introduction to major literary movements in Spanish America. (Next offered 1973-74.)

Spanish

Span. 301 3 Credits Fall
Span. 302 3 Credits Spring
Advanced Spanish (3+0)
Discussions and essays on more difficult subjects or texts, translations, stylistic exercises, special grammatical problems, systematic vocabulary building. Conducted in Spanish. (Prerequisite: Span. 202 or equivalent. Next offered 1974-75.)

Span. 313 3 Credits Fall
Span. 314 3 Credits Spring
Spanish Civilization (3+0)
History, development of the arts and of national institutions; extensive reading and classroom discussion. Conducted in Spanish. (Prerequisite: Span. 202. Next offered 1974-75.)

Span. 321 3 Credits Fall
Span. 322 3 Credits Spring
Studies in Spanish Literature (3+0)
Choice of authors, genres, or periods of Spanish literature for intensive study. Conducted in Spanish. Students may repeat course for credit when topic varies. (Prerequisite: Span. 202 or equivalent. Next offered 1975-76.)

Span. 437 3 Credits Fall
Literature of the Golden Age (3+0)
Close study of outstanding literary works in different genres. Conducted in Spanish. (Next offered 1975-76.)

Span. 447 3 Credits Fall
20th Century Literature (3+0)
Analysis primarily of the post-war novel and poetry. (Next offered 1973-74.)

Span. 448 3 Credits Spring
Spanish American Literature (3+0)
Critical reading of selected literary works and introduction to major literary movements in Spanish America. (Next offered 1973-74.)

Special Topics
Various subjects for advanced students. (Admission by arrangement. Offered as demand warrants.)

Spanish

Span. 101 5 Credits Fall
Span. 102 5 Credits Spring
Elementary Spanish (5+0)
Development of the four skills (listening comprehension, speaking, reading, and writing) with emphasis on oral work, practice in the language laboratory, basic grammar, and vocabulary.

Span. 201 4 Credits Fall
Span. 202 4 Credits Spring
Intermediate Spanish (4+0)
Continuation of Span. 102. Increasing emphasis on reading ability and cultural material. Conducted in Spanish. (Prerequisite: Span. 102 or two years of high school Spanish.)

SPEECH COMMUNICATION

Sp.C. 51 2 Credits Fall-Spring
Sp.C. 52 2 Credits Fall-Spring
Basic Speech Communication Skills (2+0)
Development of ease and fluency in oral discourse.
Course Descriptions

Sp.C. 111 3 Credits Fall-Spring
Fundamentals of Oral Communication (3+0)
An introduction to the processes of interpersonal and
group communication patterns, focusing on the
affective elements of language and culture.

Sp.C. 201 1 Credit Fall-Spring
Debate Practicum (0+2)
Training in practical debate situations. Participation in
Debating Society required. May be repeated for a
maximum of six credits. Students wishing to take this
course and Sp.C. 351, Argumentation and Debate, may
enroll in the latter with the consent of the instructor and
may not receive more than eight units of credit for any
combination of the two courses.

Sp.C. 211 2 Credits Fall
Voice and Diction (1+2)
Development of fluency and clearness in the voice;
study and practice to improve speech and eliminate
faults of articulation and pronunciation; phrasing,
inflection, and emphasis, including individual analysis
and tape recordings. (Prerequisite: Sp.C. 111 or
admission by arrangement.)

Sp.C. 235 3 Credits Fall-Spring
Discussion and Small Group Process (3+0)
An approach to understanding the process of the small
group; emphasizing self-evaluation, the role of conflict,
the observation and diagnoses of group behavior, and
the value of T-group training and the encounter group
as an approach to learning.

Sp.C. 241 3 Credits Fall-Spring
Public Speaking I (3+0)
Theory and practice of exposition and persuasion and
platform speaking situations.

Sp.C. 311 3 Credits Fall
Introductory Phonetics (3+0)
Use of International Phonetic Alphabet; broad
transcription use in acting, teaching, speech
improvement.

Sp.C. 320 3 Credits Fall-Spring
General Semantics (3+0)
A study of human interaction through communication
processes.

Sp.C. 325 3 Credits Fall-Spring
Communication Theory (3+0)
Study of human communication as a system of
behavior, and as interaction within specific contexts.
Focus is on the philosophical bases of communication
theory, acquisition of communicative skills,
intrapersonal processing, interaction, social influence
and communication, and communication as culture.

Sp.C. 341 3 Credits Fall 1973
Persuasion (3+0)
Theory of the persuasive process, focusing on the
nature of attitude change, aspects of the source, the
receiver and the persuasive message. Exploration of
ethical questions, and of applied persuasion in
contemporary society.

Sp.C. 351 3 Credits Fall-Spring
Argumentation and Debate (3+0)
Theory of argumentation and debate applied to
contemporary issues. Practice in briefing and
presenting arguments, testing evidence, and detecting
fallacies.

Sp.C. 361 3 Credits Fall-Spring
Oral Interpretation (3+2)
Interpretative reading based on textual analysis of
literary forms and careful study of principles of
effective reading. (Prerequisite: Sp.C. 111 or admission
by arrangement.)

Sp.C. 371 3 Credits Fall-Spring
Speech for the Classroom Teacher (3+0)
Speech development in the child. Common classroom
speech disorders; articulation, delayed speech,
stuttering. Classroom procedures in speech
improvement.

Sp.C. 411 3 Credits Spring
Advanced Phonetics (3+0)
Use of International Phonetic Alphabet; narrow
transcription and modifying signs; foreign language
accents and dialects; speech distortions. (Prerequisite:
Sp.C. 311.)

Sp.C. 493 Credits Arr. Fall
Sp.C. 494 Credits Arr. Spring
Special Topics
Various subjects. (Admission by arrangement. Offered
as demand warrants.)

SPEECH PATHOLOGY

Sp.P. 210 3 Credits Spring
Speech Processes (3+0)
Five basic speech processes. Respiration, phonation,
resonance, articulation, and audition. (Offered
alternate years.)

Sp.P. 211 3 Credits Fall-Spring
Fundamentals of Speech Correction I (3+0)
Basic speech processes. Comprehensive study of four
speech disorders; cleft palate, stuttering, hearing
impairment, mental retardation (speech and language
aspects).
Course Descriptions

Sp.P. 212 3 Credits Fall-Spring
Fundamentals of Speech Correction II (3+0)
Comprehensive study of four speech disorders: articulation, aphasia, cerebral palsy, autism (speech and language aspects).

Sp.P. 231 3 Credits Fall-Spring
Audiology I (3+0)
Structure, function and pathologies of the hearing mechanism. Contribution of hearing processes to communication. Assessment of hearing by pure-tone audiometry.

Sp.P. 341 3 Credits Spring
Clinical Methods in Speech Correction (2+2)
Administration of clinical tests of speech and application of principles of speech correction. (Prerequisites: Sp.C. 311, Sp.P. 211, or admission by arrangement.)

Sp.P. 483 Credits Arr. Fall
Sp.P. 494 Credits Arr. Spring
Special Topics
Various subjects. (Admission by arrangement. Offered as demand warrants.)

THEATRE

Thr. 101, 201 1-3 Credits Fall
Thr. 301, 401 Spring
Theater Practicum (0+var.)
Participation in Drama Workshop or lab production as performer or technical staff member.

Thr. 211 3 Credits Fall-Spring
Introduction to the Theater (3+0)
History of theater with emphasis on dramatic form, architecture, and standards of criticism.

Thr. 221 3 Credits Fall-Spring
Acting I (1+4)
Principles of acting developed through pantomime, improvisation, and sense-memory. (Prerequisite: Thr. 211 or admission by arrangement.)

Thr. 241 3 Credits Fall-Spring
Basic Stagecraft (1+4)
Materials of scene construction and painting and their use.

Thr. 321 3 Credits Fall-Spring
Acting II (1+4)
Building a character; role study and performance of small scenes. (Prerequisites: Thr. 211, 221, or admission by arrangement.)

Thr. 325 3 Credits Every Third Semester
Theatre Speech (2+2)
Vocal techniques for actors. Standard stage diction and foreign dialects.

Thr. 331 3 Credits Fall-Spring
Directing (1+4)
Direction of short plays for drama lab productions. (Prerequisites: Thr. 211, 221, or admission by arrangement.)

Thr. 341 3 Credits Fall-Spring
Intermediate Stagecraft (1+2)
An examination of the less common scenic materials with methods and techniques for their use. Particular attention will be given to the use of dye in painting backgrounds and projection slides, vacuum formed plastics, molded polyurethane foam, etc.

Thr. 343 3 Credits Fall-Spring
Scene Design (3+0)
Principles and techniques of theatrical scene design. The student will design projects directed at solving particular scenic problems or working in a specific scenic style with specific physical limitations. (Prerequisite: Thr. 241 or permission of the instructor.)

Thr. 347 3 Credits Fall-Spring
Lighting Design (3+0)
Principles and techniques of theatrical lighting design. The student will conduct practical experiments and design projects applying the experience gained from the experiments. (Prerequisites: Thr. 241, 343, or permission of the instructor. May be taken concurrently with Thr. 343, as the material from one course may be applied to the other.)

Thr. 351 3 Credits Fall-Spring
Makeup for Theater (1+4)
Theatrical makeup for actors, teachers, directors, and other theater workers; makeup materials and use; straight and character makeup illusionary and plastic relief; national types, influence of lighting. (Students will spend approximately $20.00 for materials. Offered as demand warrants.)

Thr. 355 3 Credits Fall-Spring
History of Stage Costume (3+0)
Stage costume and contemporary dress of the major theatrical periods. Emphasis will be placed on the process of selection of costumes for representative plays of each period.

Thr. 435 3 Credits Spring
Directing (3+0)
Directorial analysis of a major dramatic work for public presentation. (Prerequisite: Senior majors with 3.00 G.P.A. in speech.)
WILDLIFE AND FISHERIES

W.F. 301 3 Credits Fall
Principles of Animal Population Dynamics
and Management (2+2)
Principles of animal population dynamics, especially in
the single-species situation; principles of managing
animal populations, including goals, approaches,
ecological and socio-economic frameworks and major
problems. Extension and application of basic ecologic
principles to the manipulation of animal habitat and
populations. (Prerequisites: Biol. 271 and L.R. 102.)

W.F. 333 1 Credit Fall
Literature of Ecology and Resource
Management (0+3)
Standard and modern approaches to utilization of
biological literature; introduction to information
revision problems and techniques. Thorough
aquaintance developed with periodical and other
literature in student's special interest field.

W.F. 402 2 Credits Spring
Wildlife Biology and Management (1+3)
Intensive study of terrestrial animal population
dynamics and management, especially at community
and ecosystem levels. Methods of collecting, analyzing,
and interpreting field and laboratory data.
(Prerequisites: W.F. 301, Biol. 222 and Applied Stat.
301.)

W.F. 435 2 Credits Fall
Problems in Water Pollution Biol. (2+0)
Effects of man-caused environmental stresses on the
composition and dynamics of aquatic communities.
Changes in diversity and matter and energy transfer.
Biological indices. Water quality, standards and use
classifications. (Prerequisites: Biol. 271, W.F. 423 or
permission of the instructor; offered alternate years,
next in 1973.)

W.F. 438 2 Credits Spring
Advances in Aquaculture (2+0)
An overview of the rapidly developing field of
aquaculture including salmon, trout, and catfish
 hatcheries, and oyster and other shellfish farming. This
will include the theory as well as some practice, and
discussions of biological and economic problems.
(Prerequisites: W.F. 429. Offered alternate years; next
offered 1974.)

W.F. 491 1 Credit Fall
W.F. 492 1 Credit Spring
Seminar (2+0)
Various topics in wildlife and fisheries. (Prerequisite:
Senior standing or admission by arrangement. Offered
as demand warrants.)

W.F. 493 Credits Arr. Fall
W.F. 494 Credits Arr. Spring
Special Topics
Various subjects studied principally through directed
reading and discussions. (Admission by arrangement.)

W.F. 611 Credits Arr. Fall
W.F. 612 Credits Arr. Spring
Wildlife Field Trip
Trips to wildlife areas to acquaint students with
principal animals of the state and problems involved in
their management. (Admission by arrangement.
Offered as demand warrants.)

W.F. 621 3 Credits Fall
Vertebrate Population Dynamics (2+3)
General theories of population control, emphasizing
vertebrates. Laboratory work on the description and
interpretation of the characteristics and dynamics of
wild populations. (Prerequisite: Admission by
arrangement; minimal preparation equivalent to Biol.
271, Math. 200, and Applied Stat. 301. Offered as
demand warrants, usually in alternate years.)

W.F. 624 2 Credits Spring
Problems in Fisheries Management
Selected readings and discussions relating to major
fishes of the world, their problems, and the methods
of attack on these problems. (Admission by
arrangement. Offered as demand warrants.)

W.F. 625 3 Credits Fall
Fishery Ecology (2+3)
The dynamics of aquatic systems, emphasizing
community structure, energy flow, trophic
relationships, and secondary and tertiary production.
Applications to fish and invertebrate fisheries
management. (Prerequisites: Geol. 411 or W.F. 423, and
W.F. 429. Offered in alternate years; next offered 1973.)

W.F. 627 3 Credits Fall
Invertebrate Fisheries Biology (2+3)
The taxonomy, structure, physiology, and life histories
of some commercially important marine shellfishes.
Larval development, behavior, reproductive and
feeding biology. Interrelationships of marine animals.
(Prerequisite: Biol. 305; offered as demand warrants.)

W.F. 628 3 Credits Spring
Fin-fish Fisheries Biology (2+3)
The taxonomy, structure, and life history of some
commercially important marine fishes. Distributions and seasonal movements; behavior and feeding biology. Techniques of aging and estimating stock size and productivity. (Prerequisites: Biol. 423 or permission of the instructor; offered as demand warrants.)

W.F. 699 2 Credits Fall
Sampling in the Marine Environment (1+3)
An evaluation of classical and current methods for sampling some biological and biologically related parameters (physical, chemical, geological) of marine systems. Demonstration and use of field and laboratory techniques. Problems in calibration and interpretation of data. (Prerequisite: Permission of the instructor. Offered in alternate years, next in 1974.)

W.F. 691 1 Credit Fall
W.F. 692 1 Credit Spring
Seminar (2+0)
Various topics in wildlife and fisheries; required of all graduate students. (Biol. 691-692 may be substituted by permission of the major professor. Offered as demand warrants.)

W.F. 693 Credits Arr. Fall
W.F. 694 Credits Arr. Spring

Special Topics
Various subjects studied principally through directed reading and discussion. (Admission by arrangement.)

W.F. 695 Credits Arr. Fall
W.F. 696 Credits Arr. Spring

Research
Investigative work, either field or laboratory, on a problem of lesser scope than the thesis, or supplementary to the thesis. (Admission by arrangement.)

W.F. 697 Credits Arr. Fall
W.F. 698 Credits Arr. Spring
Thesis
(Admission by arrangement.)
THE BOARD OF REGENTS

The Regents of the University of Alaska are appointed by the Governor and are confirmed by the Legislature.

Robert E. McFarland, President, Anchorage, 1963-1979
Edith R. Bullock, Vice President, Anchorage, 1967-75
Vide G. Bartlett, Secretary, Fairbanks, 1971-1979

ADMINISTRATIVE COUNCIL

Robert W. Hiatt, Ph.D., President
Earl H. Beistline, LL.D., Executive Officer and Provost
Donald R. Theophilus, Ph.D., Vice President for Academic Affairs
Kenneth M. Rae, Ph.D., Vice President for Research
Don M. Dafoe, Ed.D., Vice President for Public Service and Community Colleges
Max M. Hullinger, B.S., Vice President for Finance and Comptroller

HONORARY STAFF AND EMERITI

Terris Moore, President Emeritus and (Hon.) Professor of the University. Williams College '29, A.B.; Harvard '33, M.B.A.; '37, D.C.S.; University of Alaska '67, LL.D.; (President 1949-1953, Prof. 1953-)

Vena A. Clark, Associate Professor of Home Economics, Emeritus. Cotner College '25, A.B.; Iowa State University '33, M.S. (1953-1967)

Lydia Fohn-Hansen, Associate Director of Cooperative Extension, Emeritus. Iowa State College '19, B.S.; '22, M.S.; University of Alaska '59, D. Hum. (1925-1936, 1940-1959)

Hugh B. Fate, Jr., Treasurer, Fairbanks, 1969-1977
A. D. Robertson, Ketchikan, 1967-1975
Brian J. Brundin, Anchorage, 1969-1977
Robert W. Hiatt, President of the University, Ex-Officio Member

Charles O. Ferguson, Ed.D., Provost, Southeastern Region
Lewis E. Haines, Ph.D., Provost, Southcentral Region
Robert J. Hilliard, M.A., Director, Student Affairs
Harold A. Byrd, B.B.A., Executive Director, Budget Development and Legal Affairs
Donald C. Moyer, Ph.D., Executive Director of Planning and Institutional Studies

Registers

Laura Jones, Director of Admissions and Registrar, Emeritus. University of Denver '41, B.A. (1956-1971)

Minnie Wells, Professor of English, Emeritus.

ACADEMIC FACULTY AND PROFESSIONAL STAFF 1973

The date following each name designates the time of original appointment to the University faculty or staff. (Dates of resignations and re-appointments are not indicated.)

A second date in parentheses follows each member's present rank and indicates the beginning of service in that rank.

Aase, Jon M. — 1972 — Lecturer in Medical Science (1972). Pomona College '58, B.S.; Yale University School of Medicine '62, M.D.

Akasofu, Syun-Ichi — 1958 — Professor of Geophysics (1964), Geophysical Institute. Tohoku University '53, B.S.; '57, M.S.; University of Alaska '61, Ph.D.

Allen, George R. — 1964 — Assistant Professor of English (1971). University of Alaska '84, B.A.; '84, M.A.

Allen, Lee D. — 1956 — Associate Agricultural Engineer (1973), Institute of Agricultural Sciences (Palmer Research Center). University of Idaho '57, B.S.; '72, M.S.

Allison, Richard C. — 1968 — Associate Professor of Geology (1968). University of Washington '57, B.S.; '59, M.S.; University of California '67, Ph.D.

Anderson, James H. — 1970 — Assistant Professor of Plant Ecology (1970), Institute of Arctic Biology. University of Washington '63, B.S.; Michigan State University '70, Ph.D.

Anderson, Russell L. — 1972 — Instructor in English (1972). University of Montana '63, B.A.; University of Texas, Austin '71, M.A.

University of Missouri '25, B.S.; New York University '38, Ph.D. (1945-1971)

James R. Leckley, Senior Scientist in Charge, Petersburg Fur Farm, Emeritus. Oregon State University '38, B.S. (1941-1972)

Andrensen, Patricia — 1967 — Assistant Professor of Mathematics (1967). University of Illinois '55, B.S.; University of Missouri '58, M.A.

Arvey, Martha M. — 1969 — Assistant Professor of Library Science (1972). Scripps College '63, B.A.; University of California, Los Angeles '64, M.L.S.

Aso, Shigeo J. — 1972 — Assistant Professor of English (1972). Union College '61, B.A.; University of Hawaii '69, M.A.

Atamian, Sarkis — 1982 — Associate Professor of Sociology (1987). University of Rhode Island '50, B.S.; Brown University '54, M.A.

Ayote, Ellen P. — 1964 — Agent, Home Economics and Assistant Professor of Extension (Tanana District) (1969). Stout State College '58, B.S.; University of Alaska '69, M.A.

Backlund, Philip M. — 1972 — Instructor in Speech (1972). Humboldt State College '69, B.A.; '71, M.A.

Barclay, Robert W. — 1971 — Lecturer in Business Administration (1971). Pacific Union College '58, B.S.; Stanford University '65, M.A.

Barker, Patricia L. — 1972 — Home Economics Agent, and Instructor of Extension (Bethel) (1972). Washington State University '56, B.S.

Barsdate, Robert J. — 1962 — Professor of Marine Science (1972), Institute of Marine Science. Allegheny College '59, B.S.; University of Pittsburgh '64, Ph.D.

Bedford, Jimmy — 1965 — Head, Department of Journalism and Professor of Journalism (1968). University of Missouri '50, A.B.; '51, B.J.; '52, M.A.

Behrke, Charles E. — 1950 — Dean, College of Mathematics, Physical Sciences and Engineering (1965); Acting Dean. College of Biological Science and Renewable Resources (1972); Professor of Civil Engineering (1965). Washington State University '48, B.S.; '50, M.S.; Stanford University '57, Ph.D.; P.E.

Behrisch, Hans Werner — 1969 — Assistant Professor (1969), Institute of Arctic Biology. University of British Columbia '64, B.S.; Oregon State University '68, M.A.; University of British Columbia '69, Ph.D.

Beistline, Earl H. — 1946 — Executive Officer and Provost (1970); Dean, College of Earth Sciences and Mineral Industry (1949); Professor of Mining Engineering (1946). University of Alaska '39, B.Min. Engr.; '47, E.M.; '69, LL.D. (Hon.); P.E.

Benesch, Walter J. — 1963 — Associate Professor of Philosophy (1968). University of Denver '55, B.A.; University of Montana '56, M.A.; Leopold Franzes Universitaet Innsbruck '63, Ph.D.

Bender, Maurice — 1972 — Director of Arctic Health Research Center (1972). John Hopkins University '38, B.A.; Temple University '44, B.S.P.; '45, M.S.; Georgetown University '50, Ph.D.

Benjamin, Elizabeth F.—1968—Staff Counselor and Assistant Professor of Education (1968). University of Pacific '48, B.Mus.; San Jose State College '63, M.A.

Bennett, F. Lawrence — 1968 — Head, Department of Engineering Management, and Associate Professor of Engineering Management (1968). Rensselaer Polytechnic Institute '61, B.C.E.; Cornell University '63, M.S.; '66, Ph.D.; P.E.

Benson, Carl S. — 1960 — Professor of Geophysics and Geology (1969). University of Minnesota '50, B.A.; '56, M.S.; California Institute of Technology '60, Ph.D.

Benson, Ruth G. — 1972 — University Nurse (1972). Northwestern University '55, B.S. in Nursing; Evanston Hospital School of Nursing '55, Diploma.

Berglund, Erwin R. — 1970 — Assistant Professor of Land Resources (1970). University of Minnesota '65, B.S.; University of Arizona, '67, M.S.; University of Minnesota, '70, Ph.D.

Bernet, John W. — 1959 — Associate Professor of English (1970). State University of Iowa '51, B.A.; University of North Dakota '57, M.A.; Stanford University '69, M.A.; '69, Ph.D.

Biddle, Charles C. — 1972 — Drill Instructor, ROTC.

Billaud, Jean-Paul — 1965 — Professor of Music (1970). Ecole Normale de Musique de Paris '55, Diplome Superieur de Virtuosite; '56, License de Concert; Laureate International Competitions: "Viotti" (Italy) '56; Paris '57.

Biswa, Nireendra N. — 1971 — Assistant Professor of Geophysics (1971). Geophysical Institute. Indian Institute of Technology, India '55, B.Sc. Hons; M.Tech; University of California, Los Angeles '70, Ph.D.

Blahna, Loretta J. — 1972 — Instructor in Speech Communication (1972). University of Minnesota '65, B.A.; University of Kansas '70, M.A.

Bohanan, Mary L. — 1972 — Home Economics Agent and Instructor of Extension (Northwestern District) (1972). University of Alaska '72, B.S.

Bonney, William W. — 1969 — Assistant Professor of English (1969). University of Pennsylvania '64, B.A.; '65, M.A.; '69, Ph.D.

Registers

Branton, C. Ivan — 1968 — Agricultural Engineer (1968), Institute of Agricultural Sciences (Palmer Research Center). Oregon State University; '33, B.A.

Briggs, Ulyss Lee — 1972 — Assistant Professor of Remedial Mathematics (SOS) (1972). University of Denver '60, B.A.; Southeastern State College, Durant Oklahoma '67, M.T.

Brown, Greeta K. — 1965 — Associate Professor of Music (1968). Fort Wright College '49, B.M.; University of Idaho '53, M.M.; University of Oregon '72, D.M.A.

Brown, Robert W. — 1967 — Head, Department of Mathematics, and Professor of Mathematics (1967). Pacific University '50, B.S.; Oregon State University '52, M.S.; '58, Ph.D.

Brummett, Richard D. — 1970 — Assistant Professor of Psychology (1970). Texas College of Arts & Industries '64, B.A.; Texas Technological College '66, M.A.

Buffler, Patricia A. — 1972 — Lecturer in Medical Science (1972). The Catholic University of America '60, R.N.; '60, B.S.; University of California, Berkeley, '65, M.P.H.; '72, Ph.D.

Buffler, Richard T. — 1971 — Associate Professor of Geology, Sea Grant Program and Geology Department (1971), University of Texas, Austin '59, B.S.; University of California, Berkeley '67, Ph.D.

Burand, Willard M. — 1968 — Assistant Professor of Mining Extension (1970), Statewide Services. New Mexico Institute of Mining Technology '53, B.S.

Burrell, David Colin — 1965 — Associate Professor of Marine Science (1969), Institute of Marine Science. Nottingham University '61, B.Sc.; '64, Ph.D.

Burton, Wayne E. — 1963 — Associate Professor of Agricultural Economics (1969), Institute of Agricultural Sciences. University of Wyoming '58, B.S.; Texas A & M University '60, M.S.; Montana State University '68, Ph.D.

Button, Don K. — 1964 — Associate Professor of Marine Science (1968), Institute of Marine Science. Wisconsin State College '55, B.S.; University of Wisconsin '61, M.S.; '64, Ph.D.

Cameron, James N. — 1971 — Assistant Professor of Zoophysiology (1971). University of Wisconsin '66, B.S.; University of Texas '69, Ph.D.

Carden, John R. — 1972 — Senior Research Assistant (1972). Kent State University '70, B.S.; '72, M.S.

Carlson, Robert F. — 1965 — Director, Institute of Water Resources (1972) and Associate Professor of Hydrology (1969). University of Wisconsin '81, B.S.; '83, M.S.; '87, Ph.D.; P.E.

Cashen, William R. — 1942 — Head, Alumni Services and Career Planning and Placement (1972); Professor of Mathematics (1951). University of Alaska '37, B.S.; University of Washington '48, M.A.

Chamorro Buerba, Angel — 1969 — Assistant Professor of Spanish (1969). Salamanca University '55, B.A.; Paris University '58, M.A.; Diploma of High International Studies '60; University of Helsinki Diploma of Comparative Sciences '61.

Chinn, Ronald Ernest — 1966 — Head, Department of Political Science, and Associate Professor of Political Science (1966). Stanford University '33, A.B.; '37, M.A.; University of California, Berkeley '58, Ph.D.

Cohen, Jules B. — 1971 — Associate Professor of Environmental Health Engineering (1971). City College of New York '55, B.C.E.; University of Colorado '58, M.S.; California Institute of Technology '65, Ph.D.

Coleman, Roger — Medical Officer (1972). Harvard University '67, B.A.; Tufts University School of Medicine '71, M.D.

Conn, Stephen — 1972 — Associate Professor of Law (1972). Colgate University '84, B.A.; Columbia University School of International Affairs '68, M.I.A.; Columbia University Law School '68, J.D.

Cook, Donald J. — 1953 — Professor of Mineral Beneficiation (1965). University of Alaska '47, B.S.; '52, E.M.; Pennsylvania State University '58, M.S.; '60, Ph.D.; P.E.

Cook, John P. — 1968 — Department Head and Assistant Professor of Anthropology (1969). Dartmouth College '59, B.A.; Brown University '64, M.A.; University of Wisconsin '68, Ph.D.

Cooney, R. Theodore — 1970 — Assistant Professor of Fisheries and Marine Science (1970). University of Washington '84, B.S.; '87, M.S.; '70, Ph.D.

Cornwall, Peter G. — 1971 — Assistant Professor of History (1971). University of Toronto '62, B.A.; University of Michigan '63, A.M.; '70, Ph.D.

Dafoe, Don M. — 1968 — Vice President for Public Service (1971). Valley City State College '37, B.A.; University of Idaho '48, M.S.; Stanford University '61, Ed.D.

Davies, John — 1970 — Senior Research Assistant (1970), Geophysical Institute. Reed College '87, B.A.; University of Alaska '70, M.S.

Davis, Charles W. — 1983 — Head, Department of Music and Professor of Music (1969). State University of Iowa '37, B.A.; '48, M.S.

Davis, T. Neil — 1965 — Deputy Director and Professor of Geophysics (1970), Geophysical Institute. University of Alaska '55, B.S.; California Institute of Technology '57, M.S.; University of Alaska '61, Ph.D.

Dean, Frederick C. — 1954 — Head, Department of Wildlife and Fisheries; Professor of Wildlife Management, and Leader of Cooperative Park Studies Unit (1954). University of Maine '50, B.S.; '52, M.S.; State University of New York '57, Ph.D.

Registers

Deehr, Charles S. — 1964 — Associate Professor of Geophysics (1969), Geophysical Institute. Reed College ’58, B.A.; University of Alaska ’61, M.S.; ’68, Ph.D.

Degen, Vladimir — 1969 — Assistant Professor of Physics (1969), Geophysical Institute. University of Toronto ’58, B.A.; ’60, M.A.; University of Western Ontario ’66, Ph.D.

Dickerson, Richard G. — 1972 — Assistant Director for Operations and Chief Pilot (1972), Naval Arctic Research Laboratory.

Dieterich, Robert A. — 1967 — Veterinarian (1967), Institute of Arctic Biology. University of California ’61, B.S.; ’83 D.V.M.

Dinkel, Donald H. — 1968 — Associate Professor of Plant Physiology (1968), Institute of Agricultural Sciences (College Research Center). University of Minnesota ’54, B.S.; ’60, Ph.D.

Distad, Jack — 1955 — Associate Professor of Mathematics (1968). Montana State University ’53, B.S.; ’55, M.S.

Dowling, Richard P. — 1970 — Head, Department of Engineering and Maintenance, and Chief Engineer, KUAC (FM) - TV (1972), Division of Media Services.

Doyle, John P. — 1963 — Assistant Professor of Fisheries Extension (1969), Statewide Services. University of Washington ’59, B.S.

Drahn, Theodore L. — 1968 — Assistant Professor of Sociology (1969). University of Oregon ’56, B.S.; Portland State College ’65, M.S.W.

Duncan, John Thomas — 1970 — Executive Producer, KUAC (FM) - TV, and Assistant Professor of Broadcasting (1972). Casper College ’60, A.A.; University of New Mexico ’64, B.A.; ’68, M.A.

Dunlap, Sherry Lynn — 1964 — Assistant Professor of Library Science (1970). Bowling Green State University ’58, B.A.; University of Illinois ’59, M.S.L.S.

Eaton, J. Robert — 1967 — Professor of Electrical Engineering (1967). Purdue University ’25, B.S.E.E.; University of Wisconsin ’38, M.S.E.E.; Purdue University ’42, Ph.D.

Egan, Robert H. — 1967 — Head, Student Orientation Services, and Assistant Professor of Psychology (1969), Office of Student Affairs. Montana State University ’60, B.A.; Long Beach State College ’65, M.A.

Ellison, Laurence — 1972 — Assistant Professor of Wildlife Management (1972). University of Idaho ’61, B.S.; University of Massachusetts ’63, M.S.; University of California, Berkeley ’73, Ph.D.

Ensign, Walter Gates, Jr. — 1969 — Head, Department of Speech, Drama and Radio, and Assistant Professor of Theatre (1969). University of Denver ’68, B.A.; ’67, M.A.

Esmail, Omar J. — 1969 — Assistant Professor of Petroleum Engineering (1969). Louisiana State University ’64, B.S.; ’66, M.S.; University of Texas ’69, Ph.D.

Farr, Larry — 1972 — Instructor in Brasses and Band (1972). Illinois Wesleyan University '69, B.M.Ed.; University of Illinois '70, M.S.Ed.

Feist, Dale D. — 1971 — Assistant Professor of Zoophysiology (1971). University of Cincinnati '60, A.B.; University of California, Berkeley '69, Ph.D.

Fenlon, James A. — 1972 — Assistant Professor of Military Science (1972). University of Dayton '60, B.S.

Fields, Charles R. — 1972 — Head of Financial Aids and Assistant Professor of Education; Foreign Student Advisor and Coordinator of Admissions Counseling (1972). Central Washington State College '85, B.A.; Portland State University '68, M.S.; Oregon State University '72, Ph.D.

Fink, Milton A. — 1968 — Head, Department of Accounting, and Assistant Professor of Accounting (1970). University of Nebraska '58, B.S.; University of Denver '66, M.S.B.A.; Colorado '66, C.P.A.

Fischer, Victor — 1968 — Director, Institute of Social, Economic and Government Research, and Professor of Political Science (1968). University of Wisconsin '48, B.A.; Massachusetts Institute of Technology '50, M.C.P.

Flanagan, Patrick W. — 1968 — Associate Professor of Microbiology (1972). Dublin University College '84, B.S.; McGill University '69, Ph.D.

Fowler, James D. — 1972 — Assistant Instructor of Electronics Technology (1972) University of Alaska '72, A.E.T.

Foster, James C. — 1971 — Assistant Professor of History (1971). University of Wisconsin '67, B.S.; Cornell '72, Ph.D.

Frith, Nancy E. — 1971 — Assistant Professor of Physical Education (1971). Oklahoma State University '63, B.S.E.; '65, M.S.

Frith, Paul O. — 1972 — Lecturer in Medical Science (1972). Oklahoma State University, Stillwater '65, D.V.M.; University of California, Berkeley '70, M.P.H.

Fuller, William B. — 1972 — Lecturer in Civil Engineering (1972). University of Alaska '59, B.S.; '64, M.S.

Gauss, Edward J. — 1960 — Director, Computer Center, and Associate Professor of Electrical Engineering (1968). California Institute of Technology '54, B.S.; University of Colorado '56, M.A.; University of California, Los Angeles '60, M.S.; P.E.

Gedney, Larry D. — 1966 — Associate Geophysicist (1972), Geophysical Institute. University of Nevada '60, B.S.; '68, M.S.

Geesin, David L.—1972—Program Director for KUAC (FM) and Special Lecturer in Radio Production (1972). University of Alaska '69, B.A.

Genaux, Charles T. — 1953 — Associate Professor of Chemistry (1970). Iowa State College '50, B.S.; University of Rochester '53, M.S.; University of Alaska '69, Ph.D.

Gentry, Foye L. — 1964 — Head, Department of Electronics Technology, and Senior Instructor of Electronics Technology (1969)

George, Alfred H. — 1956 — Director, Land Management (1970). Oregon State University '50, B.S.

Getz, Martin P.—1972—Instructor in Mathematics (1972). University of South Dakota '68, B.A.; University of Alaska '72, M.S.

Gilbert, Wyatt C. — 1971 — Assistant Professor of Geology (1971). Stanford University '64, A.B.; '65, B.S.; University of Washington '65, M.S.; Stanford University '71, Ph.D.
Registers

Gislarson, Gary A. — 1970 — Assistant Professor of Mathematics (1970). University of Alaska '66, B.S.; University of Oregon '68, M.S.; '70, Ph.D.

Goering, John J. — 1962 — Professor of Marine Science (1968). Bethel College '56, B.S.; University of Wisconsin '60, M.S.; '62, Ph.D.

Gordon, Bruce R. — 1963 — Head, Department of Linguistics and Foreign Languages, and Professor of French and Spanish (1963). Brown University '37, A.B.; New York State College for Teachers '42, M.A.; Syracuse University '50, Ph.D.

Graves, Donald M. — 1972 — Director of Construction (1972). University of Alaska '54, B.S.

Griese, Arnold — 1960 — Professor of Education (1972). Georgetown University '48, B.S.; University of Miami '57, M.Ed.; University of Arizona '60, Ph.D.

Guthrie, Russell D. — 1963 — Associate Professor of Zoology (1968). University of Illinois '58, B.S.; '59, M.S.; University of Chicago '63, Ph.D.

Guymon, Gary L. — 1971 — Associate Professor of Water Resources and Civil Engineering (1971). University of California, Davis '68, B.S.; '67, M.S.; '70, Ph.D.

Haines, Robert E. — 1967 — Assistant Professor of English (1967). Ohio State University '54, B.A.; '56, M.A.; Stanford University '68, Ph.D.

Hales, David A. — 1972 — Assistant Professor of Library Science (1972). Brigham Young University '66, B.S.; Drexel University '68, M.L.S.; University of Pennsylvania '72, M.A.

Halverson, Radene A. — 1969 — Assistant Professor of Office Administration (1969). University of North Dakota '67, B.S.; '69, M.S.

Hamilton, Thomas D. — 1968 — Associate Professor of Geology (1970). University of Idaho '60, B.S.; University of Wisconsin '64, M.S.; University of Washington '68, Ph.D.

Hargraves, Darroll R. — 1972 — Coordinator-Developer, Academic Programs, and Assistant Professor of Extension (1972). Oakland City College '84, B.S.; University of Alaska '71, M.S.

Harbo, Samuel J. — 1964 — Associate Professor of Biometrics (1971). University of Nebraska '51, B.S.; University of Alaska '58, M.S.; North Carolina State University, Raleigh '72, Ph.D.

Harris, Margaret P. — 1958 — Assistant Professor of Library Science (1962). William and Mary College '38, B.A.; University of Wisconsin '39, B.L.S.

Harrison, Gordon S. — 1969 — Assistant Professor of Political Science (1969), Institute of Social, Economic, and Government Research. University of the Pacific '65, A.B.; University of California, Berkeley '69, M.J.; Claremont Graduate School '69, Ph.D.

Harrison, William D. — 1972 — Assistant Professor of Physics (1972). Mt. Allison University '58, B.Sc.; University of London '60, B.Sc. (Special); California Institute of Technology '66, Ph.D.

Hartman, Charles W. — 1967 — Senior Research Assistant Engineer (1967) and Executive Officer (1971), Institute of Water Resources. Rutgers University '64, B.S.; University of Alaska '67, B.S.

Hassinger, David — 1970 — Community Development Agent and Instructor of Extension (Aniak). University of St. Paul '66, B.S.

Haurwitz, Bernhard — 1970 — Professor of Meteorology (1970), Geophysical Institute. University of Leipzig '27, Ph.D.
Hawkins, Daniel B. — 1967 — Professor and Head, Department of Geology (1972). Montana State College '56, B.S.; '57, M.S.; Pennsylvania State University '61, Ph.D.

Head, Thomas J. — 1965 — Professor of Mathematics (1985). University of Oklahoma '54, B.S.; '55, M.A.; University of Kansas '62, Ph.D.

Herriott, C. Frank — 1971 — Producer-Director and Operations Director for KUAC TV and Special Lecturer in TV Production (1972). University of Texas, El Paso '69, B.A.

Hilt, Robert W. — 1973—President of the University (1973). San Jose State College '36, B.A.; University of California at Berkeley '41, Ph.D.

Hickok, David M. — 1970 — Director, Sea Grant Program (1970); Director, Arctic Environmental Information and Data Center (1972). Syracuse University '47, B.S.

Hilliard, Robert J. — 1969 — Director of Student Affairs (Dean of Students), and Assistant Professor of Political Science (1969). Southern Oregon College '52, B.S.; Kent State University '62, M.A.

Hills, Henry M. III — 1972 — Lecturer in Police Administration (1972). University of Alaska '70, B.A.

Hilpert, John M. — 1959 — Professor of Engineering Management (1962). Oregon State University '38, B.S.C.E.; George Washington University '47, M.A.; State University of Iowa '50, Ph.D.

Holmgren, Bjorn E. — 1972 — Assistant Professor of Geophysics (Visiting) (1972), Geophysical Institute. Uppsala Universitet (Sweden) '59, Fil. Kand.; '70, Fil. Lic.; '71, Fil. Dr.

Holmgren, Melvin H. — 1966 — Associate Design Engineer (1967), Geophysical Institute. Worcester Polytechnic Institute '54, B.S.

Hood, Donald W. — 1965 — Director and Professor of Marine Science (1965), Institute of Marine Science. Pennsylvania State University '40, B.S.; Oklahoma State University '42, M.S.; Texas A & M University '50, Ph.D.

Hook, Jerry — 1959 — Associate Geophysicist (1972), Geophysical Institute. University of Alaska '58, B.S.; '63, M.S.

Hoppner, Lloyd — 1967 — Lecturer in Business Administration and Police Administration (1967). University of Nebraska '63, B.S.; '65, J.D.

Horner, Rita A. — 1969 — Assistant Professor of Marine Science (1969). University of Wisconsin '56, B.S.; University of Minnesota '58, M.S.; University of Washington '69, Ph.D.

Hoskins, Leo Claron — 1965 — Associate Professor of Chemistry (1968). Utah State University '62, B.S.; Massachusetts Institute of Technology '65, Ph.D.

Howard, Helen M. Griffiths — 1954 — Textile Coordinator, Musk Ox Project (1955).

Hulbert, Frances — 1970 — Home Economics Agent and Assistant Professor of Extension (Palmer) (1970). Iowa State University '37, B.S.; University of Alaska '70, M.S.

Hultin, Barbara A. — 1972 — University Program Coordinator (1972). University of Colorado '67, B.A.
Regents

Hunsucker, Robert D. — 1958 — Associate Professor of Geophysics (1971), Geophysical Institute. Oregon State University '54, B.S.; '58, M.S.; University of Colorado '69, Ph.D.

Isto, Sarah A. — 1971 — Instructor, English Department (1971). Oregon State University '64, B.S.; University of Alaska '71, M.A.

Irving, Laurence — 1962 — Advisory Scientific Director and Professor of Zoophiology (1966), Institute of Arctic Biology. Bowdoin College '16, A.B.; '59, (Hon.) D.Sc.; Harvard University '17, A.M.; Stanford University '24, Ph.D.; University Oslo '56, M.D.; (Hon.) University of Alaska '68, D.Sc. (Hon.)

Jones, Antoinette K. — 1972 — Head Counselor, Student Orientation Services (1972). Northern Arizona University '70, B.S.; '71, M.A.

Jones, Dorothy C. — 1968 — Assistant Professor of Sociology (1968), Institute of Social, Economic and Government Research. University of Chicago '43, B.A.; '46, M.A.; University of California, Los Angeles '61, M.S.W.; University of California, Berkeley '69, D.S.W.

Kamplin, Nicholas J. — 1970 — Assistant Professor of Sociology (1970). Central Washington State College '66, B.A.; University of Nevada '70, M.A.

Kan, Joseph R. — 1972 — Assistant Professor of Geophysics (1972), Geophysical Institute. Cheng-Kung University '61, B.S.; Washington State University '66, M.S.; University of California, San Diego '69, Ph.D.

Kanamori, Satoru — 1971 — Acting Associate Professor of Marine Science (1971), Institute of Marine Science. Nagoya University, Institute of Science '54, B.S.; '56, M.S.; '62, Ph.D.

Kessel, Brina — 1951 — Professor of Zoology (1959) and Curator of Terrestrial Vertebrate Collection (1972). Cornell University '47, B.S.; University of Wisconsin '49, M.S; Cornell University '51, Ph.D.

Keyes, W. Ronald — 1972 — Head, Wood Center Student Activities (1972). Oregon College of Education '68, B.S.; Oregon State University '69, M.S.

Khan, M. Saleem — 1969 — Assistant Professor of Economics (1969), Panjab University (Pakistan) '61, B.A.; '63, M.A.; Johannes Gutenberg University (W. Germany) '67, Ph.D.

Kienle, Jurgen — 1965 — Assistant Professor of Geophysics (1971), Geophysical Institute. Swiss Federal Institute of Technology E.T.H., '64, Diploma; University of Alaska '69, Ph.D.

Klein, David R. — 1962 — Leader, Alaska Cooperative Wildlife Research Unit, and Professor of Wildlife Management (1962). University of Connecticut '51,

Knight, George R. — 1956 — Associate Professor of Civil Engineering (1962). University of Alaska '55, B.S.; Harvard University '56, S.M.; '61, E.M.; P.E.

Kokjer, Kenneth J. — 1970 — Assistant Professor of Electrical Engineering and Biophysics (1970), Institute of Arctic Biology. Nebraska Wesleyan University '63, B.A.; University of Illinois '66, M.S.; '70, Ph.D.

Koo, Jang H. — 1969 — Assistant Professor of Japanese and Linguistics (1969), Toogknook University (Korea) '56, B.A.; '58, M.A.; University of Texas '65, M.A.; Indiana University '70, Ph.D.

Krauss, Michael E. — 1960 — Chairman, Alaskan Native Language Program (1972); Director, Division of Alaskan Native Languages, Center For Northern Educational Research (1971); and Professor of Linguistics (1968). University of Chicago '53, B.A.; Western Reserve University '54, B.A.; Columbia University '55, M.A.; University of Paris '56, Certificate d' Etudes Superieures; Harvard University '59, Ph.D. Baccalauréat Philologiae Islandicae, Haskoli Islands '60.

Krejci, Rudolph W. — 1960 — Head, Department of Philosophy, and Professor of Philosophy (1969). Leopold Franzens University, Innsbruck '59, Ph.D.

Lafferty, Charles W. — 1969 — Dean, Division of Statewide Services (1972) and Professor of Education (1969). Kansas State University '37, B.S.; '40, M.S.; University of Kansas '57, Ed.D.

Lambert, Chris A., Jr. — 1971 — Professor of Mining Engineering (1971). Missouri School of Mines and Metallurgy '41, B.S.; University of Missouri '69, M.S.; University of Utah '72, Ph.D.

Lando, Barbara M. — 1969 — Assistant Professor of Mathematics (1969). Georgian Court College '62, B.A.; Rutgers University '64, M.S.; '69, Ph.D.

Lando, Clifton A. — 1969 — Assistant Professor of Mathematics (1969). Lehigh University '62, B.A.; Rutgers University '64, M.S.; '69, Ph.D.

La Perriere, Jacqueline Doyle — 1972 — Research Biologist (1972). University of Massachusetts '64, B.S.; Iowa State University '71, M.S.

Larsen, Dinah Wolfe — 1967 — Instructor and Curator (1969), Museum. State University of Iowa '61, B.A.

Le Febvre, Richard A. — 1971 — Assistant Director for Management (1971), Naval Arctic Research Laboratory. Michigan State University '68, B.S.; '69, B.A.

Lent, Peter C. — 1968 — Assistant Leader, Alaska Cooperative Wildlife Research Unit, and Associate Professor of Wildlife Management (1970). University of Alaska '60, B.A.; University of Alberta '64, Ph.D.

Liebenthal, Edward W. — 1951 — Agent, Agriculture and Associate Professor of Extension (Homer) (1969). University of Wisconsin '48, B.S.

Lindberger, Nils A. — 1970 — Associate Professor of Electrical Engineering and Mathematics (1970). Royal Institute of Technology, Stockholm '45, M.S.; University of Washington, '68, Ph.C.; '70, Ph.D.

Lindsay, Jon W. — 1971 — Assistant WAMI Coordinator (1972) and Assistant Professor of Medical Science (1971). Seattle University '64, B.S.; University of Oregon Medical School '70, Ph.D.

Logsdon, Charles E. — 1968 — Associate Director and Professor of Plant Pathology (1970), Institute of Agricultural Sciences, (Palmer Research Center). University of Kansas City '42, B.A.; University of Minnesota '54, Ph.D.

Lokken, Donald A. — 1969 — Assistant Professor of Chemistry (1969). University of Wisconsin '63, B.A.; Iowa State University '70, Ph.D.
Registers

Lynch, Donald F. — 1970 — Associate Professor of Geography (1970). Yale College ’52, B.A.; Yale University ’65, Ph.D.

Lyons, Richard B. — 1971 — Associate Professor of Medical Sciences, W.A.M.I. Coordinator (1971). University of Oregon, Eugene ’57, B.S.; University of Oregon Medical School, Portland ’60, M.S.; ’60, M.D.

McConnell, Dee C. — 1969 — Chief Herdsman, Musk Ox Project (1969). Syracuse University ’64, B.S.

McHenry, Susan Irwin — 1972 — Counselor, Student Orientation Services (1972). University of Alaska ’70, B.A.

McKendrick, Ja D. — 1972 — Assistant Professor of Agronomy (1972), Institute of Agricultural Science, Palmer Research Center. University of Idaho ’63, B.S.; ’66, M.S.; Kansas State University ’71, Ph.D.

McPherson, Walter H. — 1971 — Agent, Community Development, Agriculture and Youth Programs, and Assistant Professor of Extension (Southeastern District) (1971). University of Idaho ’48, B.S.; ’64, M.S.

McRoy, C. Peter — 1967 — Assistant Professor of Marine Science (1967). Institute of Marine Science. Michigan State University ’63, B.S.; University of Washington ’66, M.S.; University of Alaska ’70, Ph.D.

McWhirter, Don A. — 1972 — Associate Director for Institutional Studies (1972). Purdue University ’53, B.S.

MacLean, Stephen F., Jr. — 1971 — Assistant Professor of Zoology (1971). University of California, Santa Barbara, ’64, B.A.; University of California, Berkeley ’69, Ph.D.

Marshall, John W. — 1972 — Assistant Professor of Military Science (1972). Michigan State University ’72, B.A.

Martin, Joanne B. — 1972 — Home Economics Agent and Assistant Professor of Extension (Southeastern District) (1972). Friends University-Kansas ’65, B.A.; Ohio State University ’56, M.S.

Martin, Kenneth K. — 1963 — Staff counselor and Associate Professor of Education (1966). North Texas State University ’52, B.S.; ’53, M.Ed.; University of Denver ’63, Ph.D.

Matschke, Gunther E. — 1971 — Assistant Professor of German and Russian (1971). Pedagogische Hochschule Oldenberg '68, Prufung fur das Lehramt an Volksschulen; University of Oregon, '68, M.A.; '70, Ph.D.

Matthews, J. Brian — 1966 — Associate Professor of Marine Science. (1969), Institute of Marine Science. University of London '60, B.Sc.; '63, Ph.D.

Matthews, James W. — 1957 — Director, Cooperative Extension Service, and Professor of Extension Education (1971). North Dakota State University '52, B.S.; University of Wisconsin '61, M.S.; '70, Ph.D.

Mecklenburg, Catherine W. — 1970 — Assistant Professor of Anthropology (1970). American University '66, B.A.; University of Washington '70, M.A.; '70, Ph.C.

Mendenhall, William W. — 1955 — Professor of Civil Engineering (1967). Cornell University '49, B.C.E; '60, M.S.; P.E.

Merritt, Robert F. — 1955 — Professor of Electrical Engineering (1972). Oregon State College '49, B.S.; Stanford University '68, M.S.; P.E.

Mikow, Duane J. — 1965 — Associate Professor of Music (1968). Western State College of Colorado '51, B.A.; University of Colorado '57, M.Mus.Ed.

Miller, L. Keith — 1982 — Associate Professor of Zoophysiology (1969), Institute of Arctic Biology. University of Nevada '55, B.S.; '57, M.S.; University of Alaska, '66, Ph.D.

Miller, Orlando W. — 1957 — Associate Professor of History (1968). Muhlenberg College '47, B.A.; Columbia University '48, M.A.; '66, Ph.D.

Mitchell, William W. — 1963 — Professor of Agronomy (1972). Institute of Agricultural Sciences, (Palmer Research Center.) University of Montana '57, B.A.; '58, M.A.; Iowa State University '62, Ph.D.

Moore, Dana C. — 1970 — Head, Department of Education (1972); Associate Professor of Education (1970). Springfield College '52, B.S. New Mexico Highlands University '62, M.S.; U.S. International University '69, Ph.D.

Morack, John L. — 1968 — Associate Professor of Physics (1971). Union College '61, B.S.; Oregon State University '68, Ph.D.

Morgan, O. Ray — 1968 — Agent, Agriculture, Youth Programs, Resource Development, and Associate Professor of Extension (Tanana District) (1972). University of Kentucky '54, B.S.; '58, M.S.

Moriarty, Richard V. — 1967 — University Engineer and Director, Physical Plant (1967). University of Alaska '50, B.S.C.E.

Morrison, Peter R. — 1962 — Director, Institute of Arctic Biology, and Professor of Zoophysiology (1969). Swarthmore College '40, A.B.; Harvard University '47, Ph.D.

Registers

Mueller, Walter J. — 1970 — Dean, College of Arts & Letters and Professor of German (1970). Wesleyan University '34, B.A.; M.A.; Cornell University '38, Ph.D.

Murphy, R. Sage — 1966 — Professor of Environmental Health Engineering (1969). Southern Methodist University '57, B.S.C.E.; '59, M.S.C.E.; Pennsylvania State University '63, Ph.D.

Murray, Ann P. — 1966 — Assistant Professor of Environmental Health Sciences (1969). Pennsylvania State University '63, B.S.; University of Alaska '69, M.S.

Murray, David F. — 1969 — Curator, Herbarium Collection, and Associate Professor of Botany (1970). Middlebury College '59, A.B.; University of Alaska '61, M.S.; University of Colorado '66, Ph.D.

Murray, John S. — 1967 — Associate Professor of Physics (1971). Oregon State University '60, B.S.; '66, M.S.; University of Alaska '68, Ph.D.

Myers, Wayne W. — 1972 — Assistant Professor of Medical Science (1972). College of Wooster '61, B.A.; Harvard University '62, A.M.; University of Rochester '66, M.D.

Naidu, A.S. — 1969 — Assistant Professor of Marine Science (1969). Andhra University '59, B.Sc. (Hons.); '60, M.S.; '68, Ph.D.

Naske, Claus-M. — 1965 — Associate Professor of History (1972). University of Alaska '61, A.B.; University of Michigan '64, M.A.; Washington State University '70, Ph.D.

Neilland, Bonita — 1981 — Head, Department of Land Resources and Agricultural Science (1971), and Professor of Botany (1970). University of Oregon '49, B.S.; Oregon State College '51, M.A.; University of Wisconsin '54, Ph.D.

Nelson, David A. — 1971 — Head, Student Counseling and Testing, and Assistant Professor of Education (1972). North Dakota State University '63, B.A.; '66, M.S.; University of Northern Colorado '71, Ph.D.

Nelson, Richard D. — 1969 — Assistant Professor of Mechanical Engineering (1969). Cornell University '62, B.S.; University of California '64, M.S.; '68, Ph.D.

Neve, Richard A. — 1970 — Professor of Marine Science and Coordinator of Shore Programs, Seward Station (1970). Institute of Marine Science. Loyola University, Los Angeles '48, B.S.; University of San Francisco '51, M.S.; University of Oregon '58, Ph.D.

Niepon, Philip E. — 1970 — Assistant Professor of Geochemistry (1971). Geophysical Institute. University of Illinois '63, B.Sc.; Ohio State University '66, Ph.D.

Norrell, Stephen A. — 1970 — Head, Department of Biological Sciences, and Associate Professor of Microbiology (1971). Manhattan College, New York City, '58, B.S.; University of Detroit '61, M.S.; University of Arizona '65, Ph.D.

Northrip, Charles M. — 1963 — Director of Media Services and Associate Professor of Mass Communication (1971). University of Florida '60, A.A.; '63, M.A.; Ohio University '69, Ph.D.

Nyquist, David — 1969 — Assistant Professor (1969), Institute of Water Resources. University of Nevada '61, B.S.; '63, M.S.; Utah State University '67, Ph.D.

Ohkake, Takeshi — 1964 — Associate Professor of Geophysics (1964), Geophysical Institute. Tohoku University '52, B.Sc.; '61, D.Sc.

Orth, Franklin L., Jr. — 1971 — Assistant Professor of Economics (1971). University of Richmond '66, B.A.; University of Tennessee '70, Ph.D.

Osterkamp, Thomas — 1968 — Assistant Professor of Physics (1968). Southern Illinois University '62, B.A.; Saint Louis University '64, M.S.; '68, Ph.D.

Parthasarathy, Raghavaiyengar — 1958 — Professor of Physics (1982). Geophysical Institute. Annamalai University '50, B.Sc., (Hons.); '52, M.A.

Pasch, Kurt R.M. — 1972 — Assistant Professor of Music (1972). University of Wisconsin '55, B.S.; Colorado State University '68, M.A.T.

Pelosi, Melba F. — 1953 — Head, Department of Office Administration, and Associate Professor of Office Administration (1984). North Texas State University '48, B.S.; '52, M.B.E.

Perles, Barbara R. — 1971 — Assistant Professor of Mathematics (1972). Boston University '44, A.B.; Massachusetts Institute of Technology '48, M.S.

Peterson, Earl B. — 1972 — Business Manager (Northern Region) (1972). North Dakota State University '58, B.S.; Montana State College '63, M.S.; Montana State University '71, Ph.D.

Philip, Betty Anne P. — 1965 — Associate Professor of Zochemistry (1968). Institute of Arctic Biology. Agnes Scott College '52, B.A.; Yale University '54, M.S.; '60, Ph.D.

Philip, Kenelm W. — 1965 — Associate Professor of Physics (1969). Geophysical Institute. Yale University '53, B.S.; '58, M.S.; '63, Ph.D.

Pittman, Theda Sue — 1967 — Head, Department of Public Affairs and Production, Division of Media Services, and Assistant Professor of Broadcasting (1969). Wichita State University '66, B.S.; Indiana State University '67, M.S.

Possenti, Richard G. — 1966 — Head, Department of Psychology/Sociology, and Assistant Professor of Psychology (1967). St. Joseph College '51, B.S.; University of Alabama '55, M.A.

Powers, Anne D. — 1971 — Assistant Professor of Anthropology (1971). University of Connecticut '60, B.A.; George Washington University '64, M.A.

Powers, William R. — 1971 — Assistant Professor of Anthropology (1971). Idaho State University '64, B.A.; University of Wisconsin '68, M.S.

Probascu, Peter M. — 1966 — Program Leader, Agricultural and Area Farm Management (1972) and Associate Professor of Extension (Palmer) (1969). University of Minnesota '56, B.S.; '61, M.A.

Prokopowich, Lucien R. — 1969 — Head, Department of Military Science, and Professor of Military Science
Regiseters

Pulpan, Hans — 1968 — Assistant Professor of Geophysics (1968). Geophysical Institute. Montaninhische Hochschule Leoben, Austria '61, Dipl. Eng.; University of Illinois '64, M.S.; '68, Ph.D.

Reeburgh, William S. — 1968 — Head, Oceanography and Engineering Program (1972), and Associate Professor of Marine Science (1968), Institute of Marine Science. University of Oklahoma '61, B.S.; Johns Hopkins University '64, M.A.; '67, Ph.D.

Ray, Kenneth M. — 1961 — Vice President for Research (1972). Davidson College '65, B.S.; '67, Ph.D.

Ray, Eugene E. — 1970 — Assistant to the Dean, College of Arts and Letters (1971). Purdue University '67, B.A.; '70, M.A.

Rao, Nagabhushana M. S. — 1970 — Assistant Professor of Sociology (1970). University of Mysore '57, B.A.; '58, M.A.; Washington State University '70, Ph.C.

Rao, Pemmasani Dharma — 1966 — Associate Professor of Coal Technology (1968), Mineral Industry Research Laboratory. Andhra University '52, B.Sc.; '54, M.S.; Pennsylvania State University '59, M.S.; '61, Ph.D.

Rao, Herbert H. — 1967 — Head, Department of Geography, and Professor of Geography (1967). University of Wisconsin '29, B.A.; '34, M.A.; Harvard University '53, Ph.D.

Rao, Martha Jo — 1972 — Senior Research Assistant (1972), Institute of Marine Science. University of Alaska '68, B.A.; '69, M.S.

Rao, Nagabhushana M. — 1968 — Assistant Professor of Eskimo (1972); Director, Eskimo Language Workshop (Affiliate of Center for Northern Educational Research). University of Washington '61, B.A.; University of Alaska '72, M.A.

Rao, Nagabhushana M. — 1968 — Assistant Professor of Espkimo (1972); Director, Eskimo Language Workshop (Affiliate of Center for Northern Educational Research). University of Washington '61, B.A.; University of Alaska '72, M.A.

Rao, Mary Lou — 1972 — Assistant Professor of Business Administration (1972). Texas Woman's University '83, B.S.; North Texas State University '66, M.B.A.; University of Michigan '71, Ph.D.

Rao, Pemmasani Dharma — 1966 — Associate Professor of Coal Technology (1968), Mineral Industry Research Laboratory. Andhra University '52, B.Sc.; '54, M.S.; Pennsylvania State University '59, M.S.; '61, Ph.D.

Rao, Nagabhushana M. S. — 1970 — Assistant Professor of Sociology (1970). University of Mysore '57, B.A.; '58, M.A.; Washington State University '70, Ph.C.

Reichardt, Paul B. — 1972 — Assistant Professor of Chemistry (1972). Davidson College '65, B.S.; University of Wisconsin '69, Ph.D.

Renner, Louis L. — 1965 — Associate Professor of German (1969). Gonzaga University '50, A.B.; '51, M.A.; University of Santa Clara '58, M.S.T.; University of Munich '65, Ph.D.

Restad, Sigurnd H. — 1958 — Executive Officer (1968), Institute of Agricultural Sciences (Palmer). University of Minnesota '53, B.S.; '54, M.S.

Reuter, Frank M. — 1971 — Assistant Professor of English (1971). Holy Cross College '64, B.S.; University of Wisconsin '66, M.S.; Southern Illinois University '71, Ph.D.

Reuter, Frank M. — 1971 — Assistant Professor of English (1971). Holy Cross College '64, B.S.; University of Wisconsin '66, M.S.; Southern Illinois University '71, Ph.D.

Rice, Elbert F. — 1952 — Professor of Civil Engineering (1957). University of Idaho '48, B.S.; Oregon State College '49, M.S.; '55, Ph.D.

Roberts, Martha Jo — 1972 — Senior Research Assistant (1972), Institute of Marine Science. University of Alaska '68, B.A.; '69, M.S.

Roberts, Robert L. — 1967 — Associate Professor of Wildlife Management (1967). Ohio State University '42, B.A.; '45, D.V.M.; Michigan State University '46, M.S.; University of Wisconsin '49, Ph.D.

Roberts, Thomas D. — 1968 — Associate Professor of Physics and Electrical Engineering (1969). University

214
of Alabama '59, B.S.; Oregon State University '65, Ph.D.

Romick, Gerald J. — 1956 — Associate Professor of Geophysics (1967), Geophysical Institute. University of Alaska '52, B.S.; University of California, Los Angeles '54, M.S.; University of Alaska '64, Ph.D.

Rosenberg, Donald H. — 1994 — Associate Professor of Marine Science and Coordinator of Marine Programs (1972), Institute of Marine Science. Oregon State University '60, B.S.; '63, M.S.

Rosenmann, Marie G. — 1963 — Assistant Professor of Zoophysiology (1968), Institute of Arctic Biology. University of Chile '60, B.S.; '57, Profesor De Biologia.

Rosenthal, Paul S. — 1970 — Lecturer in Violin (1970). Juilliard School (Class of Ivan Galamian); University of Southern California (Class of Jascha Heifetz); Laureate International Competitions: Brussels '63; Helsinki '65; Moscow '70.

Roth, Robert A. — 1965 — Medical Advisor and Health Services Physician (1972). University of Oregon '56, B.S.; '60, M.D.

Rowinski, Ludwig J. — 1957 — Director of the University Museum and Associate Professor of Museum Science (1966). Cornell '51, B.S.; University of Alaska '58, M.S.

Royer, Thomas — 1969 — Assistant Professor of Marine Science (1969), Institute of Marine Science. Albion College '63, B.A.; Texas A&M University '66, M.S.; '69, Ph.D.

Sackinger, William M. — 1970 — Head, Department of Electrical Engineering (1972) and Associate Professor of Electrical Engineering and Arctic Environmental Engineering (1971). University of Notre Dame '59, B.S.; Cornell University '61, M.S.; '69, Ph.D.

Sand, Joseph R. — 1971 — Assistant Professor of Journalism (1971). University of Oregon '64, B.S.; '71, M.S.

Sandberg, Harlem D. — 1965 — State 4-H and Youth Leader and Associate Professor of Extension (College) (1969). University of Minnesota '55, B.S.; Michigan State University '64, M.A.

Saunders, A. Dale — 1959 — Assistant Professor of Economics (1968), Institute of Agricultural Sciences (Palmer Research Center). Purdue University '48, B.S.; Montana State College '50, M.S.

Scarborough, William B. — 1969 — Marketing Specialist and Associate Professor of Extension (Fairbanks) (1969). New Mexico State University '50, B.S.; '65, M.S.

Schell, Donald M. — 1969 — Assistant Professor of Marine Science (1969), Institute of Marine Science. New Bedford Institute of Technology '62, B.S.; University of Alaska '64, M.S.; '71, Ph.D.

Schindler, John F. — 1981 — Director, Naval Arctic Research Laboratory, and Biologist. Michigan State University '53, B.S.; '54, M.S.

Severs, Virgil D. — 1961 — Agent, Agriculture, and Associate Professor of Extension (Tanana District) (1968). Kansas State University '51, B.S.; '56, M.S.

Registers
Registers

Shapiro, Lewis H. — 1971 — Assistant Professor of Geology (1971), Geophysical Institute. South Dakota School of Mines and Technology '62, B.S.; University of Minnesota '71, Ph.D.

Sharma, Ghanshyam Datt — 1963 — Associate Professor of Marine Science (1969), Institute of Marine Science. Benares Hindu University '52, B.S.; Swiss Federal Institute of Technology '58, Diploma of Engineering Geology; University of Michigan '61, Ph.D.

Shaw, Glenn E. — 1971 — Assistant Professor of Geophysics (1971). Montana State University '63, B.S.; University of Southern California '65, M.S.; University of Arizona '71, Ph.D.

Shelton, Harris W. — 1971 — Assistant Dean of Students and Assistant Professor of Education (1972). University of South Florida '65, B.A.; '67, M.A.; Florida State University '71, Ph.D.

Sheridan, J. Roger — 1964 — Head, Department of Physics (1967), and Professor of Physics (1971). Reed College '55, B.A.; University of Washington '64, Ph.D.

Shoemaker, Russell L. — 1971 — Assistant Professor of Biology (1971). Western Illinois University '59, B.S.; University of Arizona '66, M.S.; '71, Ph.D.

Silver, Alan Howard — 1969 — Assistant Professor of Physical Education (1972). Pierce Junior College '65, A.A.; Fresno State College '68, B.A.; California Polytechnic '69, M.S.

Sivjee, Gulamabas G. — 1972 — Assistant Professor of Geophysics (1972). University of London '63, B.S.; John Hopkins University '70, Ph.D.

Slotnick, Herman E. — 1955 — Professor of History (1962). University of Idaho '39, B.A.; University of Washington '58, Ph.D.

Slotnick, Mary H. — 1964 — Assistant Professor of English (1968). University of Washington '45, B.A.; University of Alaska '59, M.A.

Smith, Daniel W. — 1971 — Assistant Professor of Environmental Health Engineering (1971) and Assistant Professor of Water Resources (1972). California State University '67, B.S.C.E.; '68, M.S.; University of Kansas 70, Ph.D.

Smith, Evan B. — 1972 — Assistant Professor of Journalism (1972). Whitman College '67, B.A.; University of Oregon '71, M.S.

Smith, G. Warren — 1969 — Head, Department of Chemistry and Chemical Engineering, and Associate Professor of Chemistry (1968); Acting Head, Department of General Science (1972). Grinnell College '62, B.A.; Cornell University '68, Ph.D.

Smith, James A. — 1970 — Extension Editor, Cooperative Extension Service (1972). Utah State University '55, B.S.; University of Utah '70, M.S.

Smith, Jewel Busech — 1967 — Assistant Professor of Home Economics (1967). University of Wisconsin '46, B.S.; University of New Mexico '57, M.A.

Smith, R. London — 1965 — Associate Professor of Political Science (1965). College of St. Joseph '54, B.A.; University of Oklahoma '55, M.A.; American University '64, Ph.D.

Smith, Ronald L. — 1968 — Assistant Professor of Zoology (1968). Occidental College '64, B.A.; University of Miami '67, M.S.; '68, Ph.D.

Smith, William H. — 1984 — Associate Professor of Political Science (1984). University of New Mexico '58, B.S.; Simmons College '60, M.S.L.S.

Smith, William Leonard — 1967 — Assistant Professor of Physical Education (1967). Western State College '54, B.A.; '58, M.A.

Solie, Richard J. — 1970 — Head, Department of Economics, and Professor of Economics (1970). Wisconsin State University ’55, B.S.; University of Tennessee ’63, Ph.D.

Solli, George A. — 1965 — Facility Coordinator (Northern Region), Business Office (1972). University of Connecticut ’58, B.S.E.

Srivastava, Rajendra N. — 1969 — Senior Research Assistant (1969). Delhi University (India) ’59, B.Sc. (Hons.); ’62, M.Sc.; Georgia University ’69, M.S.

Stech, David A. — 1972 — Instructor in Music (1972). University of Minnesota ’67, B.A.; Ohio State University ’69, M.A.

Stone, David B. — 1968 — Associate Professor of Geophysics (1987), Geophysical Institute. University of Keele ’56, B.A.; University of Newcastle Upon Tyne ’63, Ph.D.

Stringer, Sandra S. — 1971 — Acting Associate Project Director, Upward Bound (1972). University of Alaska ’66, B.A.

Stringer, William J.—1965—Senior Research Assistant (1965), Geophysical Institute. New Mexico State University ’62, B.S.; University of Alaska ’71, Ph.D.

Sullivan, Robert A. — 1964 — Assistant Professor of Mathematics (1967). St. Bonaventure University ’52, B.S.; ’61, M.S.; University of Illinois ’69, M.A.

Swenningson, Allen R. — 1967 — Associate Professor of Physical Education (1967). Winona State College ’58, B.S.; Colorado State College ’61, M.S.

Swanson, Dale A. — 1970 — Head, Department of Business Administration (1971), and Professor of Business Administration (1970). Boston University ’55, B.S.; University of Massachusetts ’68, M.S.; ’72, Ph.D.

Sweet, Larry — 1966 — Associate Supervisory Engineer (1969), Geophysical Institute. Washington State University ’63, B.S.; University of Alaska ’72, M.S.

Swift, Daniel W. — 1963 — Professor of Geophysics (1972), Geophysical Institute. Haverford College ’57, B.A.; Massachusetts Institute of Technology ’59, M.S.

Sykes, Dwane J. — 1967 — Associate Professor of Land Resources and Arctic Physiology (1967), Institute of Arctic Biology. Utah State University ’60, B.S.; Iowa State University ’63, Ph.D.

Tabbert, Russell — 1972 — Assistant Professor of English (1972). University of Iowa ’63, B.A.; ’69, Ph.D.

Tani, Dennis — 1972 — Graphic Designer (1972). University of California at Los Angeles ’67, B.A.

Tauriainen, Michael J. — 1969 — Engineer (1972), Arctic Environmental Engineering Laboratory. University of Alaska ’67, B.S.; ’72, M.S.

Taylor, Roscoe L. — 1951 — Research Agronomist, U.S.D.A. ARS (1968), South Dakota State University ’48, B.S.; Iowa State University ’51, M.S.
Registers

Terry, Robert A. — 1969 — Head, Department of English (1971) and Assistant Professor of English (1969). Hendrix College '60, B.A.; University of Arkansas '63, M.A.; University of Arizona '69, Ph.D.

Theophilus, Donald R — 1968 — Vice President for Academic Affairs and Professor of Education (1968). University of Idaho '53, B.A.; Harvard University '58, M.B.A.; University of Michigan '67, Ph.D.

Thomas, Wayne C. — 1971 — Assistant Professor of Economics (1971), Institute of Agricultural Science. California State Polytechnic College '65, B.S.; University of Nevada '67, M.S.; Washington State University '71, Ph.D.

Tiedemann, James B. — 1966 — Head, Department of Mechanical Engineering, and Professor of Mechanical Engineering (1966). University of Wisconsin '45, B.S.; '49, M.S.; '55, Ph.D.; P.E.

Tilsworth, Timothy — 1970 — Head, Program of Environmental Health, and Assistant Professor of Environmental Health Engineering (1970) and Assistant Professor of Civil Engineering (1972). University of Nebraska '66, B.S.C.E.; '67, M.S.C.E.; University of Kansas '70, Ph.D.

Tomczak, Theresa Helen — 1966 — Associate Professor of Physical Education (1972). State University College of New York '61, B.S.; Syracuse University '66, M.S.

Trabant, Dennis C. — 1970 — Senior Research Assistant (1970), Geophysical Institute. Kansas State University '67, B.S.; University of Alaska '70, M.S.

Travis, Michael D. — 1972 — Instructor in English (1972). Georgetown University '68, B.S.F.S.; Indiana University '72, M.S.

Tremarello, Ann — 1959 — Associate Director of Admissions and Associate Registrar (1972). University of Alaska '57, B.B.A.

Triplehorn, Don Murray — 1969 — Associate Professor of Geology (1969). Ohio Wesleyan University '56, B.A.; Indiana University '57, M.A.; University of Illinois '61, Ph.D.

Turner, Donald L. — 1970 — Associate Professor of Geology (1970), Geophysical Institute. University of California, Berkeley '60, A.B.; '68, Ph.D.

Turner, Patricia — 1967 — Assistant Professor of Office Administration (1969). Southern Methodist University '51, B.B.A.; North Texas State University '54, M.B.E.

Tusser, Arlon — 1965 — Professor of Economics (1972), Institute of Social, Economic and Government Research. University of Chicago '50, A.B.; Oregon State College '52, B.S.; University of Washington '65, Ph.D.

Upham, Donald B. — 1970 — Head, Department of Public Programming, Division of Media Services, and Assistant Professor of Broadcasting (1970). Northeastern University '55, B.S.; University of North Carolina '68, M.A.

Van Cleve, Keith — 1987 — Associate Professor of Forestry (1967). University of Washington '58, B.S.; University of California, Berkeley '60, M.S.; '67, Ph.D.

Van Hyning, Jack M. — 1968 — Associate Professor of Fisheries Biology (1968). University of Washington '48, B.S.; University of Miami '51, M.S.; Oregon State University '68, Ph.D.

Van Felt, Rollo W. — 1970 — Associate Professor of Zoophysiology and Pathology (1971). Institute of
Arctic Biology. Washington State University '54, B.A.; '58, D.V.M.; Michigan State University '61, M.S.; '65, Ph.D.

Van Veldhuizen, Philip A. — 1963 — Associate Professor of Mathematics (1968). Central College '52, B.A.; State University of Iowa '60, M.S.

Walsh, Ann Louise — 1966 — Head, Department of Home Economics, and Associate Professor of Home Economics (1968). University of California at Santa Barbara '44, B.A.; Oregon State College '60, M.S.

Walstad, David L. — 1971 — Station Engineer, KUAC, Division of Media Services (1971).

Watkins, Brenton J. — 1972 — Senior Research Assistant (1972). University of Adelaide '69, B.S. (Hons.); La Trobe University '72, M.S.

Weeden, Robert B. — 1967 — Professor of Wildlife Management (1970). University of Massachusetts '53, B.S.; University of Maine '58, M.S.; University of British Columbia '59, Ph.D.

Weldon, Donald W. — 1972 — Bookstore Manager (1972). Baptist College of Charleston '72, B.S.

Wellman, Sally M. — 1966 — Associate Professor of Home Economics (1972). Marshall University '59, B.A.; California State College '63, M.A.

Wentink, Tunis, Jr. — 1970 — Director, Institute of Arctic Environmental Engineering, and Professor of Physics (1970). Rutgers University '41, B.S.; Cornell University '54, Ph.D.

Wescott, Eugene — 1958 — Associate Professor of Geophysics (1969), Geophysical Institute. University of California, Los Angeles '55, B.A.; University of Alaska '60, M.S.; '84, Ph.D.

West, George C. — 1963 — Professor of Zoophysiology (1968), Institute of Arctic Biology. Middlebury College '53, A.B.; University of Illinois '56, M.S.; '58, Ph.D. B.S.; '58, Ph.D.

Westrate, Ben — 1970 — University Extension Agent and Associate Professor of Extension (Anchorage) (1971). Michigan State University '40, B.S.; Cornell University '51, M.S.

Widmark, Emma G. — 1968 — Agent, Home Economics, and Instructor of Extension (Tanana District) (1968). Oregon State University '63, B.S.

Wilkinson, Paul F. — 1968 — Associate Director for Research, Musk Ox Project (1968). Cambridge University '67, M.A.

Williams, Darrell D. — 1971 — Assistant Professor of Medical Sciences (1971). University of Missouri '60, B.A.; '62, M.A.; '65, Ph.D.

Williams, Jane — 1967 — Head, Department of Audio-Visual Communications (1967). Otterbein College '38, B.S.; University of New Mexico '51, M.S.

Wilson, Charles R. — 1969 — Professor of Physics (1971). Geophysical Institute. Case Institute of
Registers

Technology '51, B.S.; University of New Mexico '58, M.S.; University of Alaska '63, Ph.D.

Wilt, John B. — 1971 — Lecturer in Political Science (1971). Kansas State University '68, B.A.; '70, M.A.; University of Alaska '72, A.A.

Wooding, Frank — 1970 — Assistant Professor of Agronomy (1970), Institute of Agricultural Sciences. University of Illinois '63, B.S.; Kansas State University '68, M.S.; '69, Ph.D.

Workman, William G. — 1973 — Assistant Professor of Economics (1973). University of Wyoming '69, B.S.; Utah State University '72, M.A.; '72, Ph.D.

Wright, Frederick F. — 1968 — Assistant Professor of Oceanography and Extension Oceanographer (1972). Columbia University '59, B.S.; '61, M.A.; University of Southern California '67, Ph.D.

Wright, Gordon Brooks — 1969 — Assistant Professor of Music (1969). College of Wooster '57, B.M.; University of Wisconsin '61, M.A.

Zach, Howard L. — 1970 — Assistant Professor of Business Administration (1970). Colorado State University '64, B.S.; '66, M.S.

Academic Advising, 38
Academic Colleges, 59
College of Arts and Letters, 59
College of Behavioral Sciences and Education, 60
College of Biological Sciences and Renewable Resources, 61
College of Business, Economics and Government, 61
College of Earth Sciences and Mineral Industry, 62
College of Mathematics, Physical Sciences and Engineering, 63
Academic Faculty and Professional Staff, Registers, 200
Academic Regulations, 33
Acceptance, Conditional and Final, 14
Accounting, Course Descriptions, 118
Degree Requirements, 65
Faculty, 62
Accreditation, 9
Activities, Cocurricular, 44
Activity Fee, Campus, 15
Administrative Council, Register, 199
Admission Application Fee, 11, 16
Admission, Applying for, 12
Admission Requirements—Freshmen, 12
Admission Requirements—Others, 14
Admission Requirements—Students with Baccalaureate Degrees, 14
Admission Requirements—Transfer Students, 12
Admissions, 11
Agricultural Science, Course Descriptions, 119
Faculty, 61
Agricultural Sciences, Institute of, 53
Aid, Financial, 21
Alaska Cooperative Wildlife Research Unit, 53
Personnel, 61
Alaska State Division of Geological Survey, 58
Alaska State Highway Testing Laboratory, 58
Alaska Water Laboratory, 57
Alaskan Mineral Resources Branch of the U.S. Geological Survey, 57
Alumni Services—Career Planning and Placement, 37
Anthropology, Course Descriptions, 120
Degree Requirements, 66
Faculty, 60
Applied Statistics, Course Descriptions, 122
Applying for Admission, 11
Arctic Biology, Institute of, 53
Arctic Environmental Engineering, Institute of, 53
Arctic Environmental Research Laboratory, 57
Arctic Health Research Center, 57
Art, Course Descriptions, 122
Degree Requirements, 67
Faculty, 59
Arts and Letters, College of, 59
Asian Studies, 67
Associated Students of University of Alaska, 43
Activity Fee, 16
Audio-Visual Communications and Media Services, 50
Awards, 37
Bachelor's Degrees, 28
Behavioral Sciences and Education, College of, 60
Behavioral Standards, Student, 39
Biological Sciences and Renewable Resources, College of, 61
Biological Sciences, Course Descriptions, Degree Requirements, 68
Faculty, 61
Biology, Course Descriptions, 125
Board and Room, Fees, 17, 40
Board of Regents, Register, 199
Botany, 68
Broadcasting, Course Descriptions, 128
Brooks Memorial Mines Building, 45
Buildings and Facilities, 45
Bunnell Memorial Building, 45
Business Administration, Course Descriptions, 129
Degree Requirements, 69
Faculty, 62
Business, Economics and Government, College of, 61
Calendar, University 1973-74, 5
Campus Activity Fee, 15
Campus Buildings and Facilities, 45
Campus Map, 6
Center for Northern Educational Research, 55
Chapman Building, 45
Charges, Semester, Summary of, 15
Chemical Engineering, 69
Chemical Science, Degree Requirements, 70
Chemistry, Course Descriptions, 131
Degree Requirements, 70
Faculty, 64
Civil Engineering, Course Descriptions, 134
Degree Requirements, 72
Faculty, 64
Classroom Building, 46
Cocurricular Activities, 44
College, Academic, 59
College Observatory, 57
Commons, University, 48
Computer Center, 47
Computer Information Systems, Course Descriptions, 136
Degree Requirements, 74
Conditional and Final Acceptance, 14
Conferences, 50
Constitution Hall, 45
Contents, 3
Cooperative Extension Service, 50
Correspondence Study, 49
Counseling and Testing, 43
Course Descriptions, Alphabetical Listing, 117
Creative Writing, M.F.A.
Degree Program, 83
Degree Programs, Alphabetical Listing, 65
Degrees, 27
Degrees Offered, 27
Dentistry, 74
Index

Departments, Personnel, 59
Accounting, 62
Alaska Cooperative Wildlife Research Unit, 61
Anthropology, 60
Art, 59
Biological Sciences, 61
Business Administration, 62
Chemistry, 64
Civil Engineering, 64
Economics, 62
Education, 60
Electrical Engineering, 64
Electronics Technology Program, 64
Engineering Management, 64
English, 59
Environmental Health Engineering Program, 64
General Science, 64
Geography, 63
Geology, 63
Health, Physical Education and Recreation, 60
History, 62
Home Economics, 60
Journalism, 59
Land Resources and Agricultural Sciences, 61
Linguistics and Foreign Languages, 59
Mathematics, 64
Mechanical Engineering, 64
Military Science, 60
Mineral Engineering, 63
Music, 59
Ocean Engineering, 64
Oceanography, 64
Office Administration, 62
Philosophy, 60
Physics, 64
Political Science, 62
Psychology and Sociology, 60
Speech, Drama and Radio, 60
Wildlife and Fisheries, 61
Dissertations, and Theses, 31
Doctor of Philosophy Degree, 30
Drama, Speech, Radio and, Faculty, 60
Drop/Add Fee, 16, 18
Duckering Building, 45

Earth Sciences and Mineral Industry, College of, 62
Economic and Government Research, Institute of Social, 55
Economics, Course Descriptions, 136
Degree Requirements, 74
Faculty, 62
Education, Course Descriptions, 139
Degree Requirements, 75
Faculty, 60
Educational Counseling, 43
Educational Research, Center for Northern, 55
Educational Television Services, 51
Eielson Memorial Building, 45
Electrical Engineering, Course Descriptions, 143
Degree Requirements, 80
Faculty, 64
Electro-Mechanics Technology, Course Descriptions, 148
Electronics Technology Program, Course Descriptions, 148

Degree Requirements, 81
Faculty, 64
Elvey Building, 46
Emeriti, Register, 199
Employment, Part-time, 24
Engineering Management, Course Descriptions, 148
Degree Requirements, 81
Faculty, 64
Engineering Science, Course Descriptions, 148
English, Course Descriptions, 149
Degree Requirements, 82
Faculty, 59
Enrollment History and Summary, 10
Entrance Requirements, 11
Environmental Engineering, Institute of Arctic, 53
Environmental Health Engineering Program, Course Descriptions, 152
Degree Requirements, 83
Faculty, 64
Ernest N. Patty Building, 45
Eskimo, Course Descriptions, 153
Evening Classes, 49
Examination Fee, 16, 18
Examination, Physical, 11
Extended Registration for Graduate Students, 31
Extension Center in Arts and Crafts, 49
Extension Program, Fisheries, 49
Extension Program, Mining, 49
Extension Service, Cooperative, 50
Facilities, Buildings and, 45
Faculty and Professional Staff, Registers, 200
Federal Agencies, State and, 57
Fees, 15
Fees, Miscellaneous, 18
Fees, Payment of, 18
Fees, Refunds, 19
Final and Conditional Acceptance, 14
Financial Aids, 21
Student Loan Funds, 21
Scholarships and Grants, 21
Part-time Employment, 24
Fisheries Biology, Course Descriptions, Degree Requirements, 83
Faculty, 61
Fisheries Extension Program, 49
Food Service, 40
Foreign Languages, and Linguistics, Course Descriptions, 154
Degree Programs, 96
Faculty, 59
Forest Service, U.S.D.A., 58
Forestry, Institute of Northern, U.S.D.A., 58
French, Course Descriptions, 154
Freshmen—Admission Requirements, 12
General Requirements for Graduate Degrees, 29
General Requirements for Undergraduate Degrees, 27
General Responsibilities, Student Affairs, 39
General Science, Degree Requirements, 85
Faculty, 64
Geography, Course Descriptions, 155
Degree Requirements, 86
Faculty, 63
Geological Engineering,
Degree Requirements, 87	Faculty, 63
Geology, Course Descriptions, 157	Degree Requirements, 88
Faculty, 63	Geophysical Institute, 54
German, Course Descriptions, 161	Government Research, Institute of Social, Economic and, 55
Graduate Degrees Offered, 27	Graduate Placement Fee, 18
Graduate Student Housing, 41	Graduate Students, Extended Registration, 31
Graduate Study, Requirements for, 29	Graduation, 37
Grants and Scholarships, 21	Gymnasium, (Patty Bldg.), 45
Health Center, Student, 42	Health, Physical Education, and Recreation, Course Descriptions, 181
Degree Requirements, 90	Faculty, 60
Health Research Center, Arctic, U.S.P.H.S., 57	Health Sciences, Preprofessional Curricula, 91
Health Service, Fee, Student, 17	Hess Dining Commons, 45
High School Subject Requirements, 13	Highway Testing Laboratory, Alaska State, 58
History, Course Descriptions, 162	Degree Requirements, 92
Faculty, 62	Home Economics, Course Descriptions, 164
Degree Requirements, 92	Faculty, 60
Honor Rolls, 35	Honorary Staff, Register, 199
Housing, Graduate Student, 41	Married Student, 41
Student, 40	

Information, General, 9

Information, Sources of, 4	Institute of Agricultural Sciences, 53
Institute of Arctic Biology, 53	Institute of Arctic Environmental Engineering, 53
Institute of Marine Science, 54	Institute of Northern Forestry, U.S. Department of Agriculture, 58
Institute of Social, Economic and Government Research, 55	Institute of Water Resources, 56
Japanese, Course Descriptions, 166	Journalism, Course Descriptions, 166
Degree Requirements, 94	Faculty, 59

KUAC (FM) Radio, Television, 51	Laboratory, Mineral Industry Research, 54
Land Resources and Agricultural Science, Course Descriptions, 167	Degree Requirements, 95
Faculty, 61	Late Placement and Guidance Fee, 16, 18
Late Registration Penalty Fee, 16, 18	Laurence Irving Building, 45
Liberal Arts, Course Descriptions	Degree Requirements, 96
Library, Fine Arts and Humanities Complex, 46	Library, Elmer E. Rasmuson, 46
Library Science, Course Descriptions, 168	Linguistics and Foreign Languages, Course Descriptions, 168
Degree Requirements, 96	Faculty, 59
Loan Fund, Student, 23	

Map, Campus, 6 | Marine Science, Institute of, 54 |
Married Student Housing, 41	Master's Degree, 29
Mathematics, Course Descriptions, 168	Mathematics, Physical Sciences and Engineering, College of, 63
Degree Requirements, 96	Mechanical Engineering, Course Descriptions, 171
Faculty, 64	Medical Science, Course Descriptions, 172
Degree Requirements, 97	Medical Technology, Degree Requirements, 98
Faculty, 64	Medicine, Pre-Professional Curricula, 91
Medical Science, Course Descriptions, 172	Metallurgy, Course Descriptions, 172
Military Science, Course Descriptions, 173	Military Science, Course Descriptions, 173
Degree Requirements, 99	Faculty, 60
Mineral and Petroleum Technology, Course Descriptions, 173	Mining Engineering, Course Descriptions, 175
Course Descriptions, 173	Mining Extension Program, 49
Mineral Industry, College of Earth Sciences and, 62	Miscellaneous Fees, 18
Mineral Industry Research Laboratory, 54	Museum, 45
Mineral Preparation Engineering, Course Descriptions, 174	Music, Course Descriptions, 176
Degree Requirements, 102	Music, Degree Requirements, 102
Faculty, 63	Music, Degree Requirements, 102
Music Course Fees, 18	Music Theory and History, Course Descriptions, 176

Natural Resources, Degree Requirements, 104 |
Non-Resident Tuition, 15	Northern Studies, Degree Requirements, 105
Nursing, Pre-Professional Curricula, 91	Ocean Engineering Program, Course Descriptions, 177
Oceanography, Course Descriptions, 177	Faculty, 64

Index
Degree Requirements, 105
Faculty, 64
Office Administration,
Course Descriptions, 179
Degree Requirements, 106
Faculty, 62
Parking Fees, 18
Part-time Employment, 24
Patty Building, 45
Payment of Fees, 18
Peace Arts,
Degree Requirements, 108
Personal Counseling, 43
Petroleum, Course Descriptions, 180
Philosophy, Course Descriptions, 181
Degree Requirements, 108
Faculty, 60
Philosophy, Doctor of, Degree 30
Physical Education, Health, and Recreation,
Course Descriptions, 181
Degree Requirements, 90
Faculty, 60
Physical Examination, 11
Physical Sciences and Engineering,
College of Mathematics, 63
Physical Therapy, 91
Physics, Course Descriptions, 183
Degree Requirements, 109
Faculty, 64
Placement and Career Planning—Alumni Services, 37
Placement Testing, 11
Police Administration Program,
Course Descriptions, 186
Degree Requirements, 110
Political Science, Course Descriptions, 187
Degree Requirements, 111
Pre-Dentistry, 74
Pre-Medicine, 99
Pre-Nursing, 105
Pre-Veterinary Medicine, 115
Privacy of Student Records, 36
Professional Staff, Registers, 200
Program Plan Fee, 18
Psychology, Course Descriptions, 188
Degree Requirements, 111
Faculty, 60
Public Service, 49
Radio Station KUAC (FM), 51
Rasmuson Library, 46
Recommendation, Letters of, (Graduate Admissions), 29
Refunds, 19
Regents, Board of, 199
Registers, 199
Registration for Graduate Students, 31
Regulations, Academic, 33
Renewable Resources, College of Biological Sciences and, 61
Requirements, Admission—Freshmen, 12
Requirements, Admission—Others, 14
Requirements, Admission—Students with Baccalaureate Degrees, 14
Requirements, Admission—Transfer Students, 12
Requirements for Graduate Study, 29
Requirements for Undergraduate Degrees, 27
Research, 53
Reserve Officers Training Corps (ROTC), 99
Residence Hall Application Procedures, 42
Residence Hall Room Deposit, 17, 42
Residence Halls, 41
Residency, Fees, 16
Room and Board, 15
Room and Board, Fees, 16
Russian, Course Descriptions, 190
Scholarships, 21
Semester Charges, Summary of, 15
Sociology, Course Descriptions, 191
Degree Requirements, 112
Faculty, 60
Spanish, Course Descriptions, 193
Special Programs, 49
Speech Communication,
Course Descriptions, 193
Speech, Drama, and Radio,
Degree Requirements, 113
Faculty, 60
Speech Pathology, Course Descriptions, 194
State and Federal Agencies, 57
State Division of Geological Survey, 57
State Highway Testing Laboratory, 58
Student Affairs, 39
Student Behavioral Standards, 39
Student Health Center, 42
Student Health Service Fee, 17
Student Housing, 40
Student Loan Fund, 23
Student Records, Privacy of, 36
Student Teaching, 78
Students with Baccalaureate Degrees—Admission Requirements, 14
Study Load, 33
Summer Sessions, 51
Sydney Chapman Building, 45
Teaching Certificate, 75
Television Services, Educational, 51
Testing and Counseling, 43
Tests, ACT, 11
Theatre, Course Descriptions, 195
Theses and Dissertations, 31
Transfer Students—Admission Requirements, 12
Transportation to the University, 9
Tuition, 15
Undergraduate Degrees, General Requirements for, 27
Undergraduate Degrees Offered, 27
University Calendar 1973-74, 5
University Commons, 46
University Library, 47
Veterinary Medicine, 119
Vocational Counseling, 43
Water Laboratory, Alaska (US EPA), 57
Water Resources, Institute of, 56
Wildlife and Fisheries, Course Descriptions, 196
Degree Requirements, 115
Faculty, 61
Wildlife Research Unit, Alaska Cooperative, 53
Personnel, 61
Writers Workshop, Course Descriptions, 152
William Ransom Wood Center, 45
Zoology, 68
KP067315M