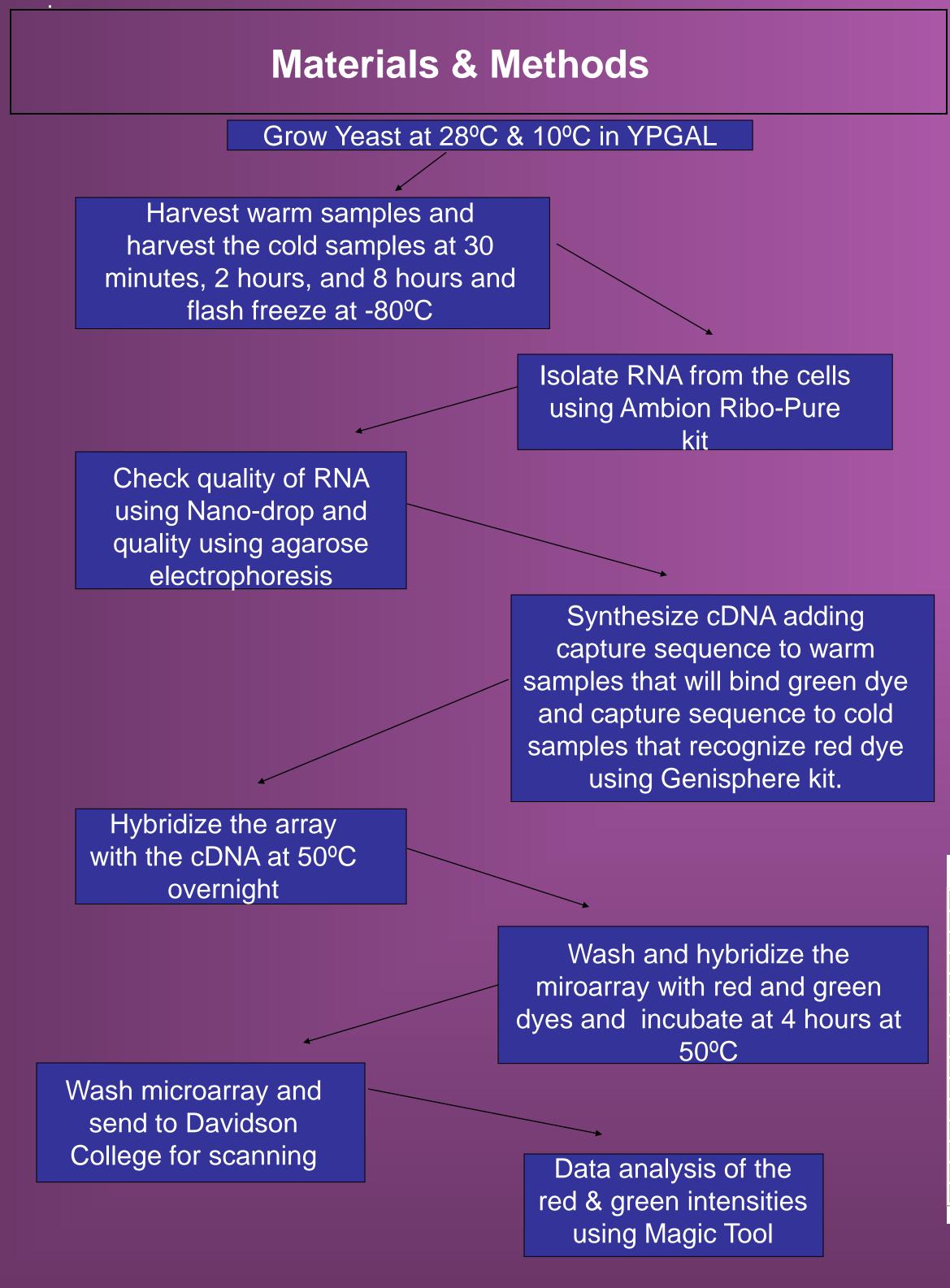
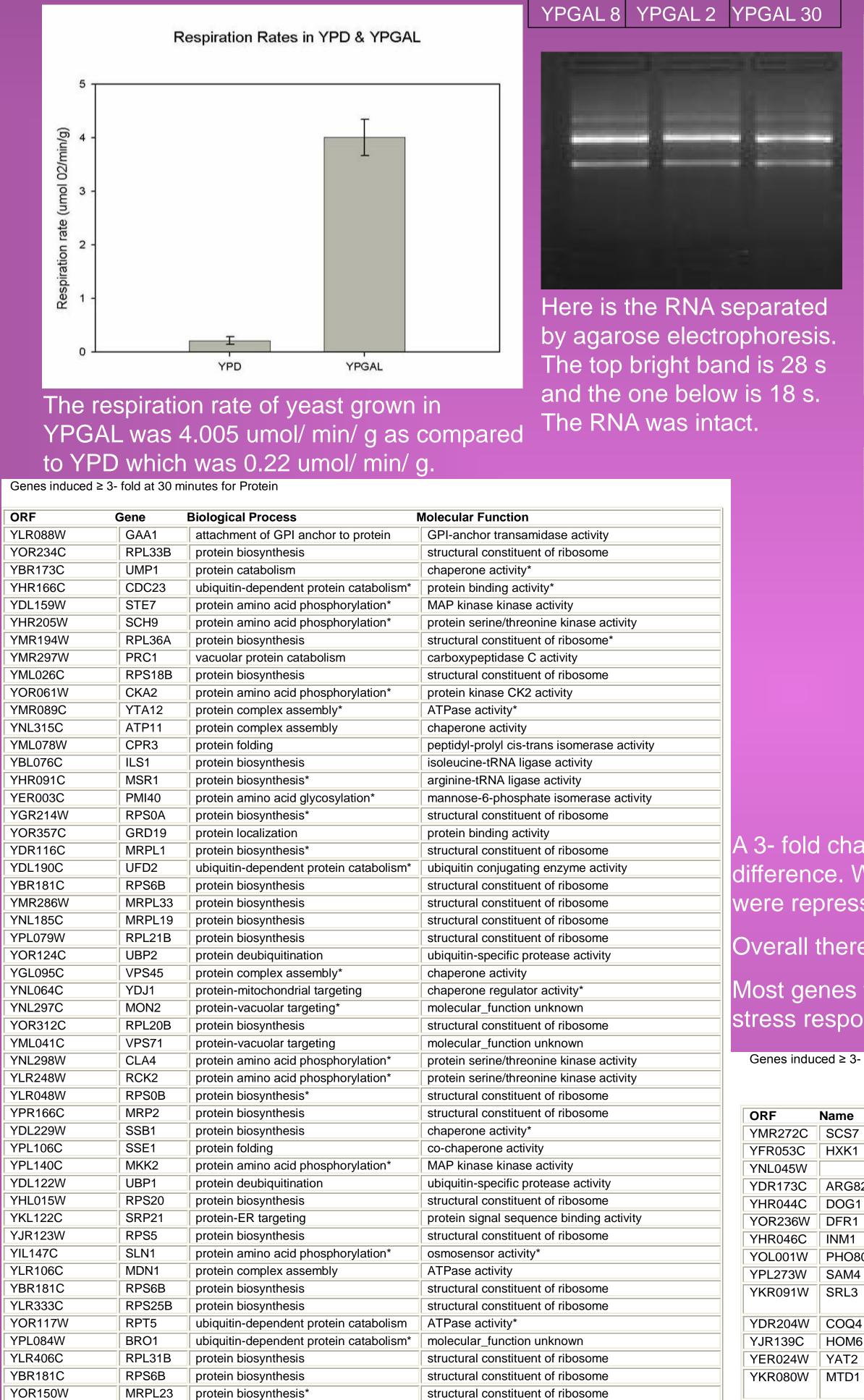
A Study of Gene Expression in Respiring Saccharomyces cerevisiae during Cold Acclimation using **Microarray Analysis**


Introduction

Saccharomyces cerevisiae is a complex unicellular eukaryote organism that contains 6,400 genes. S. cerevisiae is an excellent model organism because its genome has been sequenced and yeast microarrays are available for studying gene expression.

A yeast microarray is a glass slide with about 6,400 DNA genes printed on it. To use a microarray, RNA is isolated from the cells and made into complimentary DNA (cDNA), which binds to homologous sequences on the array. The control sample is labeled with a green fluorescent dye and the experimental sample is labeled with a red fluorescent dye. The microarray is next scanned to determine the ratio of red-to-green signal.

The first study performed using microarrays examined gene expression during the diauxic shift from anaerobic to aerobic metabolism in S. cerevisae (DeRisi, 1997). We based our experimental methods on this land mark study.


The purpose of this study was to examine changes in gene expression in response to cold temperature in yeast. The results from this study will tell us how organisms adapt to cold temperature. Changes in gene expression in yeast have not been extensively studied at temperatures below 15° C. We examined changes in gene expression in yeast grown in galactose (YPGAL) at 10°C using microarray analysis. Yeast grown in YPGAL use the metabolic process of oxidative phosphorylation, which means they respire, to produce ATP for energy. We hypothesized that respiring yeast cells would experience more oxidative stress during cold acclimation compared to fermenting cells.

Erin Nelson, Aimee Fogler, Kristin O'Brien

University of Alaska Fairbanks

Results

Genes involved in protein biosynthesis and the ubiquitin pathway were up regulated.

Genes repressed \geq 3-fold at 30 minutes for Stress

ORF	Name	Biological Process	Molecular Function
YBR023C	CHS3	response to osmotic stress*	chitin synthase activity
YJR032W	CPR7	response to stress	chaperone activity*
YHR043C	DOG2	response to stress*	2-deoxyglucose-6-phosphatase activity
YBL075C	SSA3	response to stress*	heat shock protein activity
YLL039C	UBI4	response to stress*	protein tagging activity*
YLL039C	UBI4	response to stress*	protein tagging activity*
YDL166C	FAP7	response to oxidative stress	molecular_function unknown
YLL039C	UBI4	response to stress*	protein tagging activity*
YLL039C	UBI4	response to stress*	protein tagging activity*
YLL026W	HSP104	response to stress*	heat shock protein activity*
YGR209C	TRX2	response to oxidative stress*	thiol-disulfide exchange intermediate activity
YBR244W	GPX2	response to oxidative stress	glutathione peroxidase activity
YLL039C	UBI4	response to stress*	protein tagging activity*
YLL026W	HSP104	response to stress*	heat shock protein activity*

YDR502C SAM2 YKL038W RGT1 YDL109C YMR170C ALD2 YOR065W CYT1

Metabolic genes involved in amino acid biosynthesis, fatty acid synthesis, and oxidative phosphorylation genes were up regulated.

In response to stress, chaperones were up regulated to enhance protein folding. Also, genes involved in the ubiquitin pathway, which degrades proteins were up regulated.

Classification of genes induced ≥ 3 - fold in response to cold temperature

		30 min		2hr		8hr	
	All	up	%	up	%	up	%
Biogenesis	229	18	8%	15	7%	12	5.2%
Cell Cycle	50	1	2%	2	4%	0	0.0%
Chaperone	84	8	10%	5	6%	4	4.8%
DNA Repair	53	3	6%	2	4%	3	5.7%
DNA Replication	42	2	5%	4	10%	3	7.1%
Folding	41	2	5%	4	10%	5	12.2%
Heat Shock	24	3	13%	3	13%	6	25.0%
Metabolism	206	18	9%	11	5%	5	2.4%
Modification	37	3	8%	4	11%	1	2.7%
Oxidative Phosphorylation	3	1	33%	1	33%	0	0.0%
Oxidative Stress	28	3	11%	3	11%	5	17.9%
Protein	770	50	6%	42	5%	43	5.6%
Respiration	48	6	13%	3	6%	0	0.0%
Signal	56	3	5%	5	9%	2	3.6%
Stress	142	14	10%	13	9%	14	9.9%
Transcription	289	24	8%	23	8%	23	8.0%
Translation	65	6	9%	6	9%	3	4.6%
Transport	396	30	8%	32	8%	10	2.5%
Unknown	2258	155	7%	136	6%	100	4.4%

Classification of genes repressed \leq 3- fold in response to cold temperature

	30 min						
	All	down	%	down	%	down	%
Biogenesis	229	4	1.7%	11	4.8%	13	5.7%
Cell Cycle	50	0	0.0%	0	0.0%	3	6.0%
Chaperone	84	0	0.0%	3	3.6%	1	1.2%
DNA Repair	53	1	1.9%	3	5.7%	5	9.4%
DNA Replication	42	2	4.8%	2	4.8%	0	0.0%
Folding	41	1	2.4%	3	7.3%	2	4.9%
Heat Shock	24	0	0.0%	1	4.2%	0	0.0%
Metabolism	206	4	1.9%	7	3.4%	5	2.4%
Modification	37	0	0.0%	1	2.7%	0	0.0%
Oxidative Phosphorylation	3	0	0.0%	0	0.0%	1	33.3%
Oxidative Stress	28	4	14.3%	2	7.1%	2	7.1%
Protein	770	22	2.9%	27	3.5%	43	5.6%
Respiration	48	0	0.0%	3	6.3%	2	4.2%
Signal	56	0	0.0%	3	5.4%	1	1.8%
Stress	142	4	2.8%	5	3.5%	8	5.6%
Transcription	289	4	1.4%	12	4.2%	13	4.5%
Translation	65	1	1.5%	5	7.7%	3	4.6%
Transport	396	5	1.3%	10	2.5%	38	9.6%
Unknown	2258	39	1.7%	88	3.9%	182	8.1%

A 3- fold change in gene expression was considered a significant difference. We focused our analysis on the expression of genes that were repressed or induced at the 30 minute time point.

Overall there are more genes induced than repressed.

Most genes that change in expression are involved in metabolism, stress response, transcription, transport, and protein metabolism.

Genes induced ≥ 3- fold at 30 minutes for Metabolism

Biological Process	Molecular Function						
fatty acid metabolism	oxidoreductase activity						
fructose metabolism	hexokinase activity						
lipid metabolism*	aminopeptidase activity*						
2 arginine metabolism*	inositol/phosphatidylinositol kinase activity						
glucose metabolism	2-deoxyglucose-6-phosphatase activity						
folic acid and derivative metabolism	dihydrofolate reductase activity						
myo-inositol metabolism	myo-inositol-1(or 4)-monophosphatase activity						
0 regulation of phosphate metabolism	cyclin-dependent protein kinase, regulator activity						
sulfur amino acid metabolism	homocysteine S-methyltransferase activity						
nucleobase, nucleoside, nucleotide and nucleic acid metabolism	molecular_function unknown						
ubiquinone metabolism	molecular_function unknown						
methionine metabolism*	homoserine dehydrogenase activity						
alcohol metabolism*	carnitine O-acetyltransferase activity						
one-carbon compound metabolism*	methylenetetrahydrofolate dehydrogenase (NAD+) activity						
methionine metabolism	methionine adenosyltransferase activity						
glucose metabolism	DNA binding activity*						
lipid metabolism	lipase activity						
aldehyde metabolism*	aldehyde dehydrogenase activity						
oxidative phosphorylation, ubiquinone to cytochrome c*	electron transporter, transferring electrons within CoQH2-cytochrome c reductase complex activity						

Our studies show that in response to cold temperature, the expression of genes involved in protein biosynthesis and the ubiquitin pathway are up regulated at 30 minutes in yeast. This suggests that low temperature has a denaturing effect on proteins. Ubiquitin is a small protein that gets attached to damaged proteins and targets them for degradation. Genes involved in amino acid biosynthesis may be up regulated to replace damaged proteins. In addition, the expression of chaperones was induced. Chaperones assist in protein folding.

After 8 hours at 10°C, many of the stress response genes and genes involved in protein biosynthesis were no longer up regulated and some were repressed. This suggests that the cell has adapted to the cold.

In this study, we were surprised that cells grown in YPGAL did not appear to experience more oxidative stress than cells grown in YPD. We expected that because cells grown in YPGAL have more mitochondria for oxidative phosphorylation, than cells grown in YPD, they would experience more oxidative stress in the cold. Instead, the genes that were induced or repressed in response to cold temperature were actually quite similar between cells grown in YPD and YPGAL. One exception was that cells grown in YPGAL had more mitochondrial genes up regulated at 30 minutes.

This is an example of a scanned microarray. The red dots mean the gene was induced in response to cold temperature, the green dots mean the gene was repressed, and yellow means there was no changes.

DeRisi, J, Vishwanath, I, Brown, P. (1997). "Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale". Science vol. 278, pg 680-686.

I would like to thank my mentors Kristin O'Brien and Aimee Fogler, Cori Eide, my instructor Ian Herriott, the RAHI II program, and the Genome Consortium for Active Teaching (GCAT).

Discussion

	C	0	0	O		0		0	0			0	•	•	•	
	•	۰							٠					0		
	0	•		0						0	•					
	۲	۲			0				0						0	
	•					•										
٠													•			•
			۰													۰
				0					0	0	۲	•				
			0							0						
	۲			٠		٠		0		•			0			0
				•			0						•	0		
	0					O			0						0	•
		•			۲			•	0		0				0	
•	0	0										0				0
									۲		0					•
	0								0						0	•
		•										•		•		
	0			•					•							
		0		0			0				0		0			
	0				•		0				0					

Literature Cited

Acknowledgements