Abstract:

The goal of this dissertation is to improve our understanding of human population expansions into unfamiliar environments, focusing on when and how humans adapted to the rich coastal landscape of Southeast Alaska. Investigation of the peopling of this region has been overshadowed by the broader narrative that the Americas may have been first colonized by a late Pleistocene coastal migration. Refinements to local sea-level and paleoecological chronologies help contextualize the dynamic landscape that these first inhabitants might have encountered, returning focus to the archaeology of Southeast Alaska itself.

This research considers existing archaeological data within the theoretical framework of Human Behavioral Ecology, proposing new models to acknowledge the process of landscape learning. Landscape learning provides a mechanism for exploring human adaptation to unfamiliar landscapes, which in turn produces testable hypotheses based on the familiarity of colonizing human foragers with coastal environments. Systematic sourcing of obsidian microblade cores, ubiquitous in early Holocene sites, allows for a further assessment of landscape learning, alongside an evaluation of the relationship between local raw material constraints and technological organization.

Though the oldest known archaeological sites in Southeast Alaska are firmly dated to between 10,500 and 10,000 cal BP, older occupations have been identified elsewhere on the Northwest Coast, and Tlingit and Haida Oral Histories record their presence on the landscape from Time Immemorial. Taken together, multiple lines of evidence point to an initial colonization of Southeast Alaska out of eastern Beringia, occurring prior to the occupation of the oldest known sites. By the early Holocene, foragers with a typical Northwest Coast diet were readily adapting to, but still in the process of learning, this complex coastal landscape. While these results challenge the long-established impression that the oldest known sites in the region represent a remnant population of maritime sea-mammal hunters descended from an earlier coastal migration into the Americas, this research highlights the opportunity to continue testing these hypotheses by targeting older, uplifted paleoshorelines.