
Effects of Hypoxia on Blood Osmolarity in Antarctic Fish Species
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Red-blooded G. gibberifrons increased blood osmolarity in response to ILOS 
while white-blooded fish showed no difference in response to ILOS treatment.

Figure 3: Boxes represent the interquartile ranges of osmolarity; whiskers represent minimum 
and maximum mean osmolarity. The dots represent individual measurements (N=6-12).

N. coriiceps increased blood osmolarity in response to 48hr hypoxia 
acclimation while C. aceratus decreased blood osmolarity.

Figure 4: Boxes represent the interquartile ranges of osmolarity; whiskers represent 
minimum and maximum mean osmolarity. The dots represent individual measurements 
(N=3-12).

N. coriiceps increased blood osmolarity in response to 48hr acclimation 
but not 5-day acclimation to hypoxia.

Figure 5: Boxes represent the interquartile ranges of osmolarity; whiskers represent minimum 
and maximum mean osmolarity. The dots represent individual measurements (N=8-12).

RESULTS
BACKGROUND

• Temperature is increasing in the Southern Ocean surrounding 
Antarctica and as a result, oxygen levels are decreasing (1).

• White-blooded fish lack hemoglobin while red-blooded fish have 
hemoglobin allowing for larger oxygen carrying capacity (1)

• To improve oxygen uptake, fish may remodel their gills to increase the 
gill surface area which results in a loss of the interlamellar cell mass 
(ILCM) (2). See Figure 1

• Gill remodeling reduces the ability to regulate blood osmolarity because 
loss of ILCM increases the surface area for ions to diffuse (3).

• To observe if Antarctic fish are affected by hypoxia, we measured their 
blood osmolarity.

Figure 1: Image showing gill 
remodeling due to hypoxia. 
ILCM=interlamellar cell mass. 
Photo credit: B.T. Douglas, 2013

Hypothesis: Because white-blooded fish lack hemoglobin, I 
hypothesized that in response to hypoxia blood osmolarity will 
be higher in white-blooded fish rather than red-blooded fish due 
to greater gill remodeling required to increase oxygen uptake in 

white-blooded fish.

METHODS

Figure 2: Photo credit: T. Moylan & K. O’Brien. 
Image of red fish blood and white fish blood 

Red-Blooded Fish
• Gobionotothen gibberifrons (GIB)
• Notothenia coriiceps (COR)
White-Blooded Fish
• Chaenocephalus aceratus (ACE)
• Pseudochaenichthys georgianus

(GEO)
• Acclimated to hypoxia for 48 hr and 

5 days (COR)

DATA ANALYSIS
• Two-way ANOVA analysis followed by a Tukey’s multiple 

comparisons test to determine significance for blood osmolarity 
among species and in response to ILOS and 48hr hypoxia 
acclimation

• One-way ANOVA analysis followed by Tukey’s multiple comparisons 
test to determine significance in response to 5-day hypoxia 
acclimation

CONCLUSIONS
• Due to a lower metabolic rate than red-blooded fish, white-

blooded fish have a lower demand for oxygen which may be why 
they showed no significant response in blood osmolarity to 
hypoxia acclimation.

• G. gibberifrons can tolerate lower oxygen levels than the other 
fish species and may have remodeled their gills to a greater 
extent to increase oxygen uptake resulting in the increase in blood 
osmolarity.

• N. coriiceps may be able to regulate blood osmolarity if given 
enough time to acclimate to hypoxia, as the ILCM can be shed 
quickly and regrow within days.

MOVING FORWARD
• To lower variation in blood osmolarity measurements, use the 

same individuals in normoxia and hypoxia by collecting blood 
through a cannula.

• Quantify ILCM loss in Antarctic fish due to gill remodeling that 
occurs in response to hypoxia to observe the affect hypoxia has 
on gill composition. 
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• Dissolved oxygen levels determined from measurements of oxygen 
critical level for each species 

• Fish held at approximately 15% above oxygen critical level (60% for 
5-day hypoxia acclimation)

• Fish held in normoxia with a dissolved oxygen level of 100%
• Blood obtained immediately after the animal is euthanized and is 

chilled for 24 hr to allow blood coagulation
• Blood Osmolarity measured using Vapro Pressure Osmometer
• Fish were captured off the southwestern shore of Low Island 

(63°30′S,62°42′W) and in Dallmann Bay (64°08′S,62°40′W) in austral 
winter of 2023

• Fish exposed to Incipient Lethal Oxygen Saturation (ILOS)


