TRIAL COURSE OR NEW COURSE PROPOSAL

SUBMITTED BY:

<table>
<thead>
<tr>
<th>Department</th>
<th>NW Campus</th>
<th>College/School</th>
<th>North West Campus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Claudia Ihl</td>
<td>Phone</td>
<td>443-8417</td>
</tr>
<tr>
<td>Email Contact</td>
<td>cihl@alaska.edu</td>
<td>Faculty Contact</td>
<td>Claudia Ihl, 907.443.8417 cihl@alaska.edu</td>
</tr>
</tbody>
</table>

See http://www.uaf.edu/uaegov/faculty/cd/cdman.html for a complete description of the rules governing curriculum & course changes.

1. **ACTION DESIRED** (check one):
 - [] Trial Course
 - [x] New Course

2. **COURSE IDENTIFICATION**:
 - Dept: SCIA
 - Course #: 105
 - No. of Credits: 2

 Justify upper/lower division status & number of credits: This is an introductory course and should be offered at the 100 level.

3. **PROPOSED COURSE TITLE**:
 - Field Biology

4. **CROSS LISTED?**
 - [] N
 - If yes, Dept:

 (Requires approval of both departments and deans involved. Add lines at end of form for such signatures.)

5. **STACKED?**
 - [] N
 - If yes, Dept:

6. **FREQUENCY OF OFFERING**:
 - Once a year in summer (either in June or in August)
 - (Every or Alternate) Fall, Spring, Summer — or As Demand Warrants

7. **SEMESTER & YEAR OF FIRST OFFERING** (if approved)
 - Summer 2010
8. **COURSE FORMAT:**

NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school's curriculum council. Furthermore, any core course compressed to less than six weeks must be approved by the core review committee.

<table>
<thead>
<tr>
<th>COURSE FORMAT: (check one)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6 weeks to full semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER FORMAT (specify)</td>
<td>This is a 40 hour course (20 hours lecture, 20 hours lab) that may be taught in weekly sessions during a full semester or over 6 or more intensive days.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode of delivery (specify lecture, field trips, labs, etc)</td>
<td>This course will be taught using a combination of lectures, field work, labs, and projects.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. **CONTACT HOURS PER WEEK:**

20 LECTURE hours/weeks | 20 LAB hours/week | PRACTICUM hours/week

Note: # of credits are based on contact hours. 800 minutes of lecture = 1 credit. 2400 minutes of lab in a science course = 1 credit. 1600 minutes in non-science lab = 1 credit. 2400-4800 minutes of practicum = 1 credit. 2400-8000 minutes of internship = 1 credit. This must match with the syllabus. See http://www.uaf.edu/uafgov/faculty/cd/credits.html for more information on number of credits.

| OTHER HOURS (specify type) | We have taught this class previously (as a special topics course) as an all-day (8 hrs per day) 6-day intensive session in a remote camp near Nome. However, the class could also be taught over a semester in 2 or 3 hour sessions once a week, or as a summer session over the course of 5 or 6 weeks, or on any other schedule that suits instructors or students, as long as class objectives and overall class hours are met. |

10. **COMPLETE CATALOG DESCRIPTION including dept., number, title and credits (50 words or less, if possible):**

Field Biology SCIA 105 Credits: 2
Students will learn some of the techniques that are employed by wildlife biologists to study plants, fish, and animals in the field and establish the use of the scientific method through a student research project.

11. **COURSE CLASSIFICATIONS:** (undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

<table>
<thead>
<tr>
<th>H = Humanities</th>
<th>N = Natural Science</th>
<th>S = Social Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES X NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Will this course be used to fulfill a requirement for the baccalaureate core?

IF YES, check which core requirements it could be used to fulfill:
12. COURSE REPEATABILITY:

| Is this course repeatable for credit? | YES | NO |

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

| How many times may the course be repeated for credit? | TIMES |

| If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? | CREDITS |

13. GRADING SYSTEM:

| LETTER: | X |
| PASS/FAIL: | |

RESTRICTIONS ON ENROLLMENT (if any)

14. PREREQUISITES

None

These will be **required** before the student is allowed to enroll in the course.

RECOMMENDED

None

Classes, etc. that student is strongly encouraged to complete prior to this course.

15. SPECIAL RESTRICTIONS, CONDITIONS

None

16. PROPOSED COURSE FEES

None

Has a memo been submitted through your dean to the Provost & VCAS for fee approval? **Yes/No**

N/A

17. PREVIOUS HISTORY

Has the course been offered as special topics or trial course previously? **Y**

If yes, give semester, year, course #, etc.: SCIA F193 Fall 2007, Summer 2008, Summer 2009
18. ESTIMATED IMPACT
WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.

In past years, this course has been sponsored by Nactec (Northern Alaska Career and Technical Center), an organization that provides intensive 1-or 2-week courses for High school students from the Bering Sea region. For our class, Nactec provided transportation for students, a chaperone to supervise students in the Boy Scout cabin at Salmon Lake and helped with cooking, and provisions. We expect to work with Nactec in the future when teaching this class in Nome.

If this class is taught elsewhere (e.g., the Fairbanks campus), instructors will have to use locally available field and observation opportunities (e.g., animal observations at the Large Animal Research Station, fresh water quality/invertebrate work at Smith Lake etc) to address class objectives.

19. LIBRARY COLLECTIONS
Have you contacted the library collection development officer (ffklj@uaf.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

No X Yes Materials are readily available through the Northwest Campus and personal faculty libraries.

20. IMPACTS ON PROGRAMS/DEPTS
What programs/departments will be affected by this proposed action?
Include information on the Programs/Departments contacted (e.g., email, memo)

This course is designed as a brief introduction to skills and careers used in fisheries and wildlife biology as a tool for rural campuses recruiting students (primarily Alaska Natives) into science fields and will hopefully result in increased student enrollment in science programs offered at rural campuses.

21. POSITIVE AND NEGATIVE IMPACTS
Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.

As an introductory course, SCIA105 is designed to solicit interest in other University of Alaska programs in science. Rural and Native Alaskans have a strong connection to the natural world but are underrepresented in natural science fields. This course is designed to recruit rural students into sciences, having a positive effect on other University of Alaska programs such as the Drum Beat certificate programs and 2+2 B.A./B.S. in Fisheries. The course is designed to teach students about some basic principles of science, ecology and biology in a fun, non-intimidating setting that will hopefully whet their appetites for more. The three previous courses (taught as SCIA 193 in 2007,2008, and 2009) were all a big success, and students evaluated their experience as overwhelmingly positive. We cannot think of any negative impacts.
JUSTIFICATION FOR ACTION REQUESTED

The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

Many current stakeholders in Alaska are working to recruit more rural and Native Alaskan students into natural sciences programs, ultimately in effort to increase representation of these populations in positions as resource managers, researchers and educators. While the University of Alaska is in the process of developing strong degree programs in sciences available to rural students (e.g. Drum Beats certificates and 2+2 B.A./B.S. degrees in Fisheries), as of yet there is no introductory course available which allows students to explore their options in natural science studies and professions through hands-on experience. SCIA 105 is designed to fulfill that need for exposure to natural sciences before selecting a course of study.

APPROVALS:

Signature, Chair, Program/Department of:

Signature, Division Chair CRCD of:

Signature, Chair, College/School Curriculum Council for:

Signature, Dean, College/School of:

Signature of Provost (if applicable)

Offerings above the level of approved programs must be approved in advance by the Provost.

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

Signature, Chair, UAF Faculty Senate Curriculum Review Committee
ADDITIONAL SIGNATURES: (If required)

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department of:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School Curriculum Council for:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School of:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATTACH COMPLETE SYLLABUS (as part of this application).
Note: syllabus must follow the guidelines discussed in the Faculty Senate Guide http://www.uaf.edu/uafgov/faculty/cd/syllabus.html.
The department and campus wide curriculum committees will review the syllabus to ensure that each of the items listed below are included. If items are missing or unclear, the proposed course change will be denied.

SYLLABUS CHECKLIST FOR ALL UAF COURSES
During the first week of class, instructors will distribute a course syllabus. Although modifications may be made throughout the semester, this document will contain the following information (as applicable to the discipline):

1. Course information:
 □Title, □number, □credits, □prerequisites, □location, □meeting time
 (make sure that contact hours are in line with credits).
2. Instructor (and if applicable, Teaching Assistant) information:
 □Name, □office location, □office hours, □telephone, □email address.
3. Course readings/materials:
 □Course textbook title, □author, □edition/publisher.
 □Supplementary readings (indicate whether □required or □recommended) and
 □any supplies required.
4. Course description:
 □Content of the course and how it fits into the broader curriculum;
 □Expected proficiencies required to undertake the course, if applicable.
 □Inclusion of catalog description is strongly recommended, and
 □Description in syllabus must be consistent with catalog course description.
5. □Course Goals (general) and □Student Learning Outcomes (more specific)
6. Instructional methods:
 □Describe the teaching techniques (eg: lecture, case study, small group discussion, private instruction, studio instruction, values clarification, games, journal writing, use of Blackboard, audio/video conferencing, etc.).
7. Course calendar:
 □A schedule of class topics and assignments must be included. Be specific so that it is clear that the instructor has thought this through and will not be making it up on the fly (e.g. it is not adequate to say “lab”. Instead, give each lab a title that describes its content). You may call the outline Tentative or Work in Progress to allow for modifications during the semester.
8. Course policies:
 □Specify course rules, including your policies on attendance, tardiness, class participation, make-up exams, and plagiarism/academic integrity.
9. Evaluation:
 □Specify how students will be evaluated, □what factors will be included, □their relative value, and
 □how they will be tabulated into grades (on a curve, absolute scores, etc.)
10. Support Services:
 □Describe the student support services such as tutoring (local and/or regional) appropriate for the course.
11. Disabilities Services:
The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials.
 □State that you will work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide reasonable accommodation to students with disabilities.”
FIELD BIOLOGY

COURSE INFORMATION:

Title: Field Biology

Department/Number: SCIA 105. Credits: 2 (½ credit lab, 1½ credit lecture)

Prerequisites: None required.

Location: Salmon Lake Camp, 40 miles north of Nome

Meeting Dates/Time: 6 days in August 2010 (exact dates tba), with additional 2 days for travel and camp cleanup

INSTRUCTOR INFORMATION:

Name: Claudia Ihl, Ph.D. Biology
Office Location: UAF Northwest campus
Office Hours: M-F /9 a.m. – 6 p.m.
Telephone: 907-443-8417 E-Mail: cihl@alaska.edu

COURSE READINGS/MATERIALS:

The instructor will provide students with additional lecture and study materials.

Excerpts from:

COURSE DESCRIPTION:

In this class, you will learn some of the techniques that are employed by wildlife biologists to study plants, fish, and terrestrial animals in the field and establish the use of the scientific method through a student research project.

COURSE GOALS AND STUDENT LEARNING OUTCOMES/OBJECTIVES:

This is an introductory course to the scientific method and important ecological principles and techniques. We will stay at a remote camp on Salmon Lake, 40 mi north of Nome, and be outside much of the day to study the natural environment all around us. Techniques you will learn may include (all of these have been employed in past courses):

Required course content:

Goal 1: Understand general ecological principals and processes:

Learning outcomes:

Students will be able to:

- Explain how energy flows in ecosystems from the sun to primary producers to herbivores to carnivores and finally to detritivores.
- Explain the role of plants or phytoplankton as primary producers and their ability to harvest energy from sunlight to produce organic material that serves as a food base for other organisms. We will focus this discussion on the ecosystems and organisms we study during this class: Salmon Lake and the tundra of northern Alaska.
- Construct terrestrial and aquatic food webs using the organisms we observed and studied around our camp during the course.
- Explain and understand what biodiversity is and why biologists try to conserve it.

Goal 2: Learn to apply the scientific method and its individual steps:

Learning outcomes:

Students will be able to:

- Form a hypothesis that is testable near our camp with the techniques and equipment we used during the course. Students will design a study to test the hypothesis, collect the data, graph the data, discuss their results with the class and conclude whether their hypothesis was supported or not.*
- Write a short (2-3 page) research report about their project. The report will patterned after professional research reports and will include a title, introduction, a stated hypothesis, methods, results including a graph, a discussion and a conclusion whether the original hypothesis was supported by the data or not.
*students’ hypotheses from past courses have included:
- Are blueberries more abundant on south-facing versus north-facing slopes?
- Do salmon preferably spawn in areas of high dissolved oxygen?
- Do Arctic Ground Squirrels have different warning calls for airborne versus ground predators?
- Do smoking mosquito coils really keep mosquitos away?
- Are aquatic invertebrates more common in streams with higher nutrient levels?

Goal 3: Learn to use technologies applied in field biology
Learning outcomes:
Students will be able to:
- Explain how GPS works and what some of its applications in biology are.
- Demonstrate that they can use a GPS to mark and locate fixed points and track their path during a simulated scavenger hunt around the camp

Alternative activity:
- Explain what radio collars are, which types exist, and what their uses and limitations are in tracking animals.
- Use a radio collar and receiver to track animals on the ground. (i.e., a fellow student running off with a radio collar and playing “caribou”)

Goals to engage the student in the scientific method and enhance student understanding of the scientific method, ecological principles and techniques (choose at least 2 of the following 3 goals and learning outcomes. If you choose only 2, activities need to be extended to fill the course hours):

Goal 4: Understand field methods related to assessing vegetation
Learning outcomes:
Students will be able to:
- Identify major forage classes such as willows, shrubs, ericaceous shrubs, graminoids, lichens, mosses, and forbs and explain their relative importance for foraging animals such as moose, caribou, muskoxen, ptarmigan, hares or bears.
- Apply simple methods to quantify plant abundance in the field: transects, point-frames and sighting frames.
- Explain the importance of randomizing sampling and will be able to select an appropriate sampling method to address a specific question about vegetation cover.

Goal 5: Understand field methods related to classifying animals and observing animal behavior
Learning outcomes:
Students will be able to:
- Identify ages and sexes of important local ungulate species (e.g. muskoxen: if we are lucky to find a group of muskoxen within walking distance, we will observe them and learn how to tell their age and gender).
- Explain the life cycle of important local ungulate species (e.g. muskoxen).
- Observe animal behavior [e.g. rutting muskox group (in August) and will be able to recognize individual rutting behaviors (e.g., the foreleg kick, flehmen)].
- Explain the life cycle of other important local species (e.g., beaver, arctic ground squirrels) and observe their sentinel behavior at a nearby pond or colony.
- Apply some simple techniques of behavioral observations, such as focal animals or group activity scans while observing animals (e.g. muskox groups or ground squirrels).

Goal 6: Understand field methods related to assessing aquatic ecosystems and fish populations

Learning outcomes:

Students will be able to:
- Dissect a fish (salmon or herring). They will be able to locate and name the major organs and understand basic morphology of fishes including organ form and function.
- Practice aging techniques for fish by otolith (“ear bone”) or scale extraction using a microscope.
- Use minnow traps and invertebrate nets to catch invertebrates from Salmon Lake. Students will use a dichotomous key to identify major classes of invertebrates, they will be able to explain how invertebrates can be used as indicators of water quality and their importance in the lake food web.
- Draw a diagram of the salmon life-cycle.
- Draw a schematic of an aquatic food web using the organisms of a local lake.
- Measure indicators of water quality such as nutrient levels and dissolved oxygen and understand their significance in the lake ecosystem.

INSTRUCTIONAL METHODS:

This course will be taught using a combination of field work, labs, lectures and projects.

PRELIMINARY COURSE CALENDAR:

The class will be a six day, all-day intensive course at Salmon Lake with an audio meeting on a day prior to the course and a follow-up meeting after course completion. Below is a sample schedule for the class as taught in August; exact times and assignments may change depending on class dates.

<table>
<thead>
<tr>
<th>Date</th>
<th>morning</th>
<th>afternoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>Ca. 1 week before class begins, we will have a 1 hour audio/video introduction meeting. We will discuss camp logistics, class syllabus and schedule, and introduce</td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>Students arrive to Nome from villages</td>
<td>Travel to Salmon Lake</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Day 2</td>
<td>Lecture (2 hrs): Plants as basis of an ecosystem; energy transfer through trophic levels: who eats whom and where does all the energy go? (excerpts from Pielou and from Campbell ch. 10 (photosynthesis), ch. 50 (ecology) and ch. 54 (ecosystems))</td>
<td>Lecture (1 hr) /activity (2 hrs): vegetation sampling techniques (point frames, transects). How to select the right technique for the right question. Lecture (1 hr): Scientific method /hypothesis testing: how does it work and how does it differ from traditional knowledge? Evening: work on assignment packages</td>
</tr>
<tr>
<td></td>
<td>Laboratory (2 hrs): Identify major vegetation classes in the field (Pielou, Pojar and McKinnon and other plant guides)</td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>Lecture (1 hr): basic fish morphology, how fish are sexed and aged. Laboratory (2 hrs): Catch/dissect adult fish: otolith extraction, dissection under microscope. Identify and sketch major organs</td>
<td>Lecture (1 hr): The 5 species of Pacific salmon and the salmon Life cycle The importance of dissolved oxygen and nutrient levels for aquatic organisms (excerpts from Quinn) Laboratory (2 hrs) Observe spawning salmon at Salmon Lake and head of Pilgrim River. Practice measuring dissolved oxygen and nitrogen/phosphorus levels using kits. Evening lecture (1.5 hr): What is biodiversity and why do we care about it? (excerpts from Campbell ch. 55 (conservation biology))</td>
</tr>
<tr>
<td></td>
<td>Lecture (1.5 hr) on aquatic animal life cycles. (e.g. larval stages, metamorphosis)</td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td>Lecture (2 hrs): What is a food web? Who eats whom in Salmon Lake? (excerpts from Campbell ch. 54; trophic relationships)</td>
<td>Laboratory (1 hr): students use a dichotomous key to identify families or species of aquatic invertebrates collected. (excerpts from Murdoch et al) Lecture (1 hr): Life cycle and hibernation of Arctic ground</td>
</tr>
<tr>
<td></td>
<td>Laboratory (1 hr): Capture aquatic invertebrates at the Pilgrim River head.</td>
<td></td>
</tr>
</tbody>
</table>
| Day 5 | Lecture (1 hr): How to study animal behavior: some basic sampling techniques (group scans, focal animals)
Lecture (1.5 hrs): The life cycle of muskoxen, with special emphasis on rutting behavior. How to identify muskoxen by sex and age (instructor’s own material and excerpt from Pielou)
Laboratory (2 hrs): Practice behavioral sampling techniques in the field on either muskox rutting behavior or ground squirrel colony (we have been able to find a nearby muskox herd in all 3 previously taught courses) | Lecture (1.5 hr): GPS as a modern tool for wildlife biologists: what is it, how does it work, and how do we use it?
(Alternatively, what is radio telemetry, what types of transmitters/ collars exist for different animals and what are the uses and limitations of radio telemetry to track animals)
Laboratory (2 hrs): Students go on a GPS scavenger hunt around the camp. They program locations into the GPS and follow the path to these locations.
(Alternatively, students will learn about application of radio telemetry in biology and use a radio antenna to track a radio collar hidden near camp by a fellow student)
Evening laboratory (1 hr): work on assignment packages. As a group, we will use flash cards of all the organisms we studies and encountered during the class to construct a terrestrial and aquatic food web for our ecosystem. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 6</td>
<td>Lecture (1 hr): Individual projects: Discuss suitable hypotheses to test based on field data in groups of 2 or 3 to Laboratory (3 hrs): Students collect field data in groups of 2 or 3 to</td>
</tr>
</tbody>
</table>
Lecture (1 hr): Discuss how to use clever sampling design to address a specific hypothesis.
Laboratory (2 hrs): students formulate a hypothesis based on this week’s experiences in the field, and design an appropriate test. Students will graph their data and interpret them in front of the whole class: we will discuss what makes a good graph and how in each group’s project the data may support/not support the original hypothesis.

Day 7

<table>
<thead>
<tr>
<th>Activity 1</th>
<th>Activity 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>final work on assignment packages and project reports.</td>
<td>Travel to Nome, catch afternoon flights to home villages.</td>
</tr>
<tr>
<td>Camp clean up And departure</td>
<td></td>
</tr>
</tbody>
</table>

COURSE POLICIES:

Attendance: You are expected to attend every class and every lecture.

Tardiness: Please be on time for all lectures and activities and make sure you attend to your personal needs before lecture so that you may sit through the entire lecture.

Academic integrity: We expect that all of the work you do on exams, projects or reports is your own work. We will not tolerate any cheating on exams. If we find that you have cheated, you will receive a grade of 0 for that exam. If you cheat a second time, you will be removed from the class, and you will receive a grade of F for the course. Much of your project work can be done collaboratively with classmates. However, each student has to turn in an individual project report, even if the project was done in cooperation with others. Any written assignment that you turn in for a grade must be completely free of plagiarism. You may not copy anyone else’s words and represent them as your own. That includes copying sentences and making only minor changes in the wording.

Classroom etiquette: Display only the most mature and professional etiquette in the class. Be respectful of all instructors and students, be attentive during lectures, ask thoughtful questions, be tuned in to discussions, arrive prepared for class and on time, do not sleep in class, and do not chat with other students during lecture.

EVALUATION:

This is a letter graded course. Grading will be based on the following:
Participation (10%): Students are expected to participate in all course activities and take an active part in discussions and projects. **20 points possible.**

Learning Packet (45%): There will be a packet of information over the material covered in class. It will contain questions, worksheets and assignments that address what we have learned each day and which every student is expected to complete during the week and turn in before leaving camp. **90 points possible.**

Project (45%): Students will work on a small research/data collection project during the course time and write up a brief 2-3 page final report on the last day. **90 points possible.**

180 – 200 points = A
160 – 179 points = B
140 – 159 points = C
120 – 139 points = D
Less than 120 points = F

The Classroom Contract:
As participants together in education, we have an implicit contract.

As instructors, our role is to provide you with an educational experience that will intrigue you, promote your learning, and enhance your interest, evaluate you fairly and impartially, and leave you wanting to learn more about the subject. To do that we will prepare interesting lectures and experiences, answer your questions, and tell you honestly what we don’t know and seek to find answers when we don’t know. We will help you outside the classroom when you don’t understand the material, and point you toward additional resources when we cannot meet your needs.

As students your role is to prepare for class, to come to every class expecting to actively participate and learn, to be attentive and undistracted during class, to spend time outside of class studying the material, to work with your fellow classmates during lecture and lab, to identify your own study and learning styles, to develop a plan for meeting the learning objectives of the class, and to treat all of your fellow students and instructor with respect.

Lastly, use your three greatest resources in this course:

1. Your texts and lectures! Read and attend them!

2. Your instructor. You may talk to me any time. Come to me if you have questions, concerns, didn’t understand any of the material, feel overwhelmed. I welcome interaction with my students and will be pleased to work with you at any time.

3. Your fellow students. Use them! I strongly encourage interaction among you: you may work with others on project assignments. You may exchange tips and information on assignments, but each of you has to write HIS OR HER OWN project report. You must
use your own words to describe your experiments, even if you have done them with a classmate. Don’t copy and paste words from one another.

STUDENT SUPPORT SERVICES:

Contact Liz Guthier, Admissions and Records Coordinator
Toll-Free: (800) 478-2202, Ext. 8403
In Nome: (907) 443-8403
earecchia@alaska.edu

DISABILITIES SERVICES:

UAF has a Disability Services office that operates in conjunction with the College of Rural and Community Development's (CRCD) campuses and UAF’s Center for Distance Education (CDE). Disability Services, a part of UAF’s Center for Health and Counseling, provides academic accommodations to enrolled students who are identified as being eligible for these services.

If you believe you are eligible, please visit http://www.uaf.edu/chc/disability.html on the web or contact a student affairs staff person at your nearest local campus. You can also contact Disability Services on the Fairbanks Campus at (907) 474-7043, fydso@uaf.edu.

TECHNOLOGY DISCOUNTS:

As a UAF student, you qualify for some great discounts on computer hardware and software. To find out more, check out the UA Tech Center online at www.computersales.uaf.edu/, or call them at 907-474-6463, ext. 4.