NEW COURSE PROPOSAL

SUBMITTED BY:

<table>
<thead>
<tr>
<th>Department</th>
<th>Computer Science</th>
<th>College/School</th>
<th>CEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Dr. Orion Lawlor</td>
<td>Phone</td>
<td>451-1708</td>
</tr>
<tr>
<td>Email Contact</td>
<td>lawlor@alaska.edu</td>
<td>Faculty Contact</td>
<td>Dr. Orion Lawlor</td>
</tr>
</tbody>
</table>

1. **ACTION DESIRED**
 (CHECK ONE):
 - [] Trial Course
 - [x] New Course

2. **COURSE IDENTIFICATION:**
 - Dept: CS
 - Course #: 482
 - No. of Credits: 3
 - Justify upper/lower division status & number of credits:
 A technically sophisticated, programming-heavy graphics elective lecture course that meets 3 hours per week.

3. **PROPOSED COURSE TITLE:**
 - Simulations in Computer Graphics

4. **To be CROSS LISTED?**
 - [] Yes
 - [] No
 - If yes, Dept:
 - Course #:

 NOTE: Cross-listing requires approval of both departments and deans involved. Add lines at end of form for additional required signatures.

5. **To be STACKED?**
 - [] Yes
 - [] No
 - If yes, Dept:
 - Course #:

 How will the two course levels differ from each other? How will each be taught at the appropriate level?

 Stacked course applications are reviewed by the (Undergraduate) Curricular Review Committee and by the Graduate Academic and Advising Committee. Creating two different syllabi—undergraduate and graduate versions—will help emphasize the different qualities of what are supposed to be two different courses. The committees will determine: 1) whether the two versions are sufficiently different (i.e., is there undergraduate and graduate level content being offered); 2) are undergraduates being overtaxed?; 3) are graduate students being undertaxed? In this context, the committees are looking out for the interests of the students taking the course. Typically, if either committee has qualms, they both do. More info online—see URL at top of this page.

6. **FREQUENCY OF OFFERING:**
 - Spring odd-numbered years.
 - Fall, Spring, Summer (Every, or Even-numbered Years, or Odd-numbered Years) — or As Demand Warrants

7. **SEMESTER & YEAR OF FIRST OFFERING**
 (AY2013-14 if approved by 3/1/2013; otherwise AY2014-15)
 - Spring 2015
8. COURSE FORMAT:
NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school's curriculum council. Furthermore, any core course compressed to less than six weeks must be approved by the Core Review Committee.

COURSE FORMAT:
(check all that apply)

[] 1 [] 2 [] 3 [] 4 [] X 6 weeks to full semester

OTHER FORMAT (specify)
Mode of delivery (specify lecture, field trips, labs, etc)
Lecture, paper and electronic homeworks, computer lab work, online machine problems.

9. CONTACT HOURS PER WEEK:

[] LECTURE hours/weeks [] LAB hours /week [] PRACTICUM hours /week

Note: # of credits are based on contact hours. 800 minutes of lecture=1 credit. 2400 minutes of lab in a science course=1 credit. 1600 minutes in non-science lab=1 credit. 2400-4800 minutes of practicum=1 credit. 2400-8000 minutes of internship=1 credit. This must match with the syllabus. See http://www.uaf.edu/uafgov/faculty-senate/curriculum/course-degree-procedures/guidelines-for-computing/ for more information on number of credits.

OTHER HOURS (specify type)

10. COMPLETE CATALOG DESCRIPTION including dept., number, title, credits, credit distribution, cross-listings and/or stacking (50 words or less if possible):

Example of a complete description:

FISH F487 W, O Fisheries Management
3 Credits Offered Spring
Theory and practice of fisheries management, with an emphasis on strategies utilized for the management of freshwater and marine fisheries. Prerequisites: COMM F131X or COMM F141X; ENGL F111X; ENGL F211X or ENGL F213X; ENGL F414; FISH F425; or permission of Instructor. Cross-listed with NRM F487. (3+0)

CS 482 Simulations in Computer Graphics
3 Credits Offered Spring Odd-Numbered Years
Software to simulate physical phenomena for use in interactive visualization, such as particle systems, Navier-Stokes fluid dynamics, and finite element solid mechanics. Includes Lagrangian and Eulerian meshes, stability, and discretization order. Our focus is high performance qualitatively correct simulations, rather than high-precision solutions. Prerequisites: CS 381 and PHYS 212. (3+0)

11. COURSE CLASSIFICATIONS: Undergraduate courses only. Consult with CLA Curriculum Council to apply S or H classification appropriately; otherwise leave fields blank.

H = Humanities [] S = Social Sciences []

Will this course be used to fulfill a requirement for the baccalaureate core? **IF YES, attach form.**

YES: [] **NO:** []

IF YES, check which core requirements it could be used to fulfill:

[] 0 = Oral Intensive, Format 6 [] W = Writing Intensive, Format 7 [] X = Baccalaureate Core

11A Is course content related to northern, arctic or circumpolar studies? If yes, a "snowflake" symbol will be added in the printed Catalog, and flagged in Banner.
12. COURSE REPEATABILITY:
Is this course repeatable for credit? [] YES [] NO X

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit?

If the course can be repeated for credit, what is the maximum number of credit hours that may be earned for this course?

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course?

13. GRADING SYSTEM: Specify only one. Note: Changing the grading system for a course later on constitutes a Major Course Change - Format 2 form.
LETTER: [] X
PASS/FAIL: []

RESTRICTIONS ON ENROLLMENT (if any)

14. PREREQUISITES
CS 381 (Computer Graphics) and PHYS 212 (General Physics).
These will be required before the student is allowed to enroll in the course.

15. SPECIAL RESTRICTIONS, CONDITIONS

16. PROPOSED COURSE FEES

Has a memo been submitted through your dean to the Provost for fee approval? [] Yes/No

17. PREVIOUS HISTORY
Has the course been offered as special topics or trial course previously?
[] Yes/No

If yes, give semester, year, course #, etc.:

Spring 2009: CS 480
Spring 2011: CS 493
Spring 2013: CS 493
18. ESTIMATED IMPACT
WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.
Existing computer science student lab is adequate, and the visualization lab space is adequate.
The faculty member who previously taught CS 481 every year will now teach CS 482 in odd years.

19. LIBRARY COLLECTIONS
Have you contacted the library collection development officer (kjlensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.
No ☐ Yes ☑ 2010-08-10: Existing collections are adequate

20. IMPACTS ON PROGRAMS/DEPTS
What programs/departments will be affected by this proposed action?
Include information on the Programs/Departments contacted (e.g., email, memo)
Impacts should be contained to the UAF CS undergraduate and graduate programs.

21. POSITIVE AND NEGATIVE IMPACTS
Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.
Positive impacts: students have a new option for an elective, CS 482.
Negative impacts: in a year where 482 is taught, students may have preferred 481, and vice versa. Instructor cannot reuse course material from CS481 every year.

JUSTIFICATION FOR ACTION REQUESTED
The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

Computer graphics is a diverse and growing field, and our current two-elective package of CS 381, an introduction to graphics; and CS 481, Topics in Computer Graphics; is becoming inadequate to cover the material in sufficient depth. This course essentially allows us to split CS 481 into a more rendering-focused portion keeping the original number, and the new course CS 482 to cover the expanding field of visual simulations. One graphics elective will still be offered every semester, with CS 381 every fall, and CS 481 and 482 alternating in the spring.

As an upper-division computer science elective course, few other departments should be affected. Computer science has the eventual goal of allowing students to choose an elective package leading to a degree specialization in either computer graphics or computer security.

We previously taught this course as CS 480 in 2009, and CS 493 in 2011 and 2013. The permanent number, CS 482, will be used from 2015 onward.
APPROVALS: Add additional signature lines as needed.

See attached Date 9/4/13
Signature, Chair, Program/Department of: __________________________

Chair, Shen Lin Date 3/27/2013
Signature, Chair, College/School Curriculum Council for: __________________________

Chair, Dean, College/School of: CEM Date 9/30/13

Offerings above the level of approved programs must be approved in advance by the Provost.

Signature of Provost (if above level of approved programs) __________________________ Date __________________________

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

Signature, Chair Date __________________________
Faculty Senate Review Committee: __Curriculum Review ___GAAC

___Core Review ___SADAC

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

Signature, Chair, Program/Department of: __________________________ Date __________________________

Signature, Chair, College/School Curriculum Council for: __________________________ Date __________________________

Signature, Dean, College/School of: __________________________ Date __________________________

ATTACH COMPLETE SYLLABUS (as part of this application). This list is online at: http://www.uaf.edu/uafgov/faculty-senate/curriculum/course-degree-procedures/uaf-syllabus-requirements/
APPROVALS: Add additional signature lines as needed.

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department of:</th>
<th>Date 9/4/13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School Curriculum Council for:</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School of:</th>
<th>Date</th>
</tr>
</thead>
</table>

Offerings above the level of approved programs must be approved in advance by the Provost.

<table>
<thead>
<tr>
<th>Signature of Provost (if above level of approved programs)</th>
<th>Date</th>
</tr>
</thead>
</table>

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

<table>
<thead>
<tr>
<th>Signature, Chair Faculty Senate Review Committee:</th>
<th>Date</th>
</tr>
</thead>
</table>

- Curriculum Review
- GAAC
- Core Review
- SADAC

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department of:</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School Curriculum Council for:</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School of:</th>
<th>Date</th>
</tr>
</thead>
</table>

ATTACH COMPLETE SYLLABUS (as part of this application). This list is online at: http://www.uaf.edu/uafgov/faculty-senate/curriculum/course-degree-procedures-uaf-syllabus-requirements/
A. CS 482 - Simulations in Computer Graphics

Meeting: 11:30-1pm TR
Room 208 Gruening Building
University of Alaska Fairbanks

3.0 Credits, Spring 2015
Prerequisites:
CS 381 (or substantial OpenGL)
Physics 212 (or equivalent calculus-based physics)

Instructor: Dr. Orion Lawlor
lawlor@alaska.edu, 474-7678
Office: 201E Chapman
Hours: 2-3pm TR (or open door?)

Course Website: Homeworks, Lecture Notes, Code Samples
http://www.cs.uaf.edu/2015/spring/cs482
No required textbook, but you must have access to the web and a good graphics machine with WebGL.

ADA Compliance: I will work with the Office of Disability Services (208 Whitaker Bldg., 474-5655) to provide reasonable accommodation to students with disabilities.

Catalog Description

Software to simulate physical phenomena for use in interactive visualization, such as particle systems, Navier-Stokes fluid dynamics, and finite element solid mechanics. Includes Lagrangian and Eulerian meshes, stability, and discretization order. Our focus is high performance qualitatively correct simulations, rather than high-precision solutions. Prerequisites: CS 381 and PHYS 212.

Course Goals, Learning Objectives, and Requirements

By the end of the course, you will be able to build and understand simple simulators for a variety of physical phenomena, including moving fluids and solids. Along the way, you will learn how to use both moving Lagrangian and non-moving Eulerian meshes, how to discretize partial differential equations in space and time, how to keep your simulations from "blowing up" (computational stability) and how to apply that knowledge in a variety of domains. Simple graphics programming including GLSL shaders (from CS 381), basic Newtonian physics (from Physics 212), and good familiarity with calculus are all required. Course meetings are mostly lecture, discussion, and some in-class computer programming work; you'll do the course homeworks and projects on your own.

Student Learning Outcomes

Students completing this course will be able to:

- Choose relevant physical fields to simulate a given phenomenon.
- Discretize a partial differential equation for simulation on a 2D grid.
- Explain the difference between a structured 2D grid and an unstructured finite element mesh.

Student Resources

Academic Help: Google, Rasmuson Library, Academic Advising Center (509 Gruening, 474-6396), Math Lab (Chapman Room 305), English Writing Center (801 Gruening Bldg, 474-5314).

Grading

You'll get better grades by attending class, diligently doing the homework, and understanding the material than by cramming before the exam. Your overall grade comes from:

1. HW: Homeworks and machine problems, to be distributed through the semester.
2. PROJ: two substantial graphics projects, together with a short presentation of your results.
 Example projects: read a paper and implement a similar technique, implement a known physics simulation, apply an existing simulator or method to a new domain, or improve the performance of a slow simulator.
3. MT: Midterm Exam.
4. FINAL: Final Exam (comprehensive).

The final score is then calculated as:

TOTAL = 20% HW + 30% PROJ + 25% MT + 25% FINAL

This percentage score is transformed into a plus-minus letter grade via these cutoffs: A >= 93%; A- 90%; B+ 87%; B 83%; B- 80%; C+ 77%; C 70%; D+ 67%; D 63%; D- 60%; F < 60%. The grades “C-”, “F+”, and “F-” will not be given. “A+” is reserved for truly extraordinary work.
Grading Rubric

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>Well-documented, polished, easy to use code that exceeds requirements.</td>
<td>Code that manages to meet the requirements.</td>
<td>Code that does not compile or does not solve the problem.</td>
</tr>
<tr>
<td>Projects</td>
<td>Full featured, well-rounded, and good looking code and documentation.</td>
<td>Project deliverables meet requirements (barely).</td>
<td>Project deliverables that don't exist, don't work, or are incorrect.</td>
</tr>
</tbody>
</table>

Course Rules

Individual assignments and tests may (rarely) be curved. Homeworks are normally due at midnight on the day they are due. Late homeworks will receive no credit. At my discretion, I may allow late assignments without penalty when due to circumstances beyond your control. Everything you turn in must be your own work—violations of the Student Code of Conduct will result in a minimum penalty equal to THAT ENTIRE SECTION OF YOUR GRADE (e.g., one plagiarized homework question will negate an otherwise perfect grade on all homeworks). However, even substantial reuse of other people's work is fine (and not plagiarism) if and only if it is clearly cited; you'll be graded on what you've added to others' work. Group projects (NOT homeworks) are acceptable if you clearly label who did what work; but I do expect a two-person group project to represent twice as much work as a one-person project. Department policy does not allow tests to be taken early; but in extraordinary circumstances by prior arrangement may be taken late.

Calendar

Last day to drop: TBD.

Project 1 presentations: Tuesday, February 24.

Spring break: March 16-20.

Last day to withdraw: TBD.

Project 2 presentations and last day of class: Thursday, April 30.

Final exam: TBD.
Course Outline (Tentative)

<table>
<thead>
<tr>
<th>Date</th>
<th>Subject</th>
<th>Topics Covered</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/15</td>
<td>Intro</td>
<td>Introduction to JavaScript, WebGL</td>
<td>HW0: OpenGL</td>
</tr>
<tr>
<td>1/20</td>
<td>Particles</td>
<td>OpenGL framebuffer and vertex buffer objects in THREE.js.</td>
<td></td>
</tr>
<tr>
<td>1/22</td>
<td></td>
<td>Geometry in THREE.js and PixAnvil</td>
<td>HW1: WebGL and THREE.js</td>
</tr>
<tr>
<td>1/27</td>
<td>Forces</td>
<td>Newton's laws, and gravity, friction, user interface imposed forces. Stability.</td>
<td></td>
</tr>
<tr>
<td>1/29</td>
<td></td>
<td>Discretizing partial differential equations, time integration via Euler or Leapfrog, discretization error.</td>
<td>HW2: Particle systems stability</td>
</tr>
<tr>
<td>2/3</td>
<td>Boundaries</td>
<td>Boundary conditions: bounding particles with planes, spheres, cylinders. Penalty forces & position constraint.</td>
<td>Project 1 Topic due</td>
</tr>
<tr>
<td>2/5</td>
<td></td>
<td>Real world application: online motion control algorithms for robotics</td>
<td></td>
</tr>
<tr>
<td>2/10</td>
<td>FEM</td>
<td>Springs, chains, rope, and cloth</td>
<td>HW3: Spring systems</td>
</tr>
<tr>
<td>2/12</td>
<td></td>
<td>Volumetric tetrahedra, inversion, body forces</td>
<td></td>
</tr>
<tr>
<td>2/17</td>
<td>Models</td>
<td>Mesh and 3D model formats</td>
<td>HW4: Build, ingest, and simulate a 3D model</td>
</tr>
<tr>
<td>2/19</td>
<td></td>
<td>Real world application: Failure & fracture simulations</td>
<td></td>
</tr>
<tr>
<td>3/3</td>
<td>GPU</td>
<td>Graphics card shaders, texturing, GLSL shaders</td>
<td>Midterm exam: Thursday, February 26</td>
</tr>
<tr>
<td>3/5</td>
<td></td>
<td>General purpose computing on graphics processing units (GPGPU)</td>
<td>HW5: Shader-based GPGPU</td>
</tr>
<tr>
<td>3/10</td>
<td>Waves</td>
<td>Shallow-Water Wave Equation</td>
<td>Project 2 Topic due</td>
</tr>
<tr>
<td>3/12</td>
<td></td>
<td>Boundary condition images / geometry, warped grids</td>
<td>HW6: Wave reflections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring break March 16-20</td>
<td></td>
</tr>
<tr>
<td>3/24</td>
<td>Discretization 2D</td>
<td>Continuous to discrete transformation in 2D</td>
<td></td>
</tr>
<tr>
<td>3/26</td>
<td></td>
<td>Courant stability limit (the speed of sound)</td>
<td></td>
</tr>
<tr>
<td>3/31</td>
<td>PDE 2D</td>
<td>Reaction-Diffusion Equations, Turk/Turing</td>
<td>HW7: 2D PDEs</td>
</tr>
<tr>
<td>4/2</td>
<td>Fluids</td>
<td>2D fluid simulation: Navier-Stokes PDE</td>
<td></td>
</tr>
<tr>
<td>4/7</td>
<td></td>
<td>Advection, Stam's Stable Fluid technique</td>
<td></td>
</tr>
<tr>
<td>4/14</td>
<td>Applications</td>
<td>Multigrid and scalable Poisson solvers</td>
<td>HW8: Fluid flow</td>
</tr>
<tr>
<td>4/16</td>
<td></td>
<td>Rate of convergence and stability</td>
<td></td>
</tr>
<tr>
<td>4/21</td>
<td></td>
<td>Real world application: heat transport in buildings, convective cooling</td>
<td></td>
</tr>
<tr>
<td>4/23</td>
<td></td>
<td>Real world application: control via simulation</td>
<td></td>
</tr>
<tr>
<td>4/28</td>
<td></td>
<td>Course recap and review for final exam</td>
<td>Project 2 Presentations: Thursday, April 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exam: TBD 5/5 – 5/8</td>
<td></td>
</tr>
</tbody>
</table>