Submit original with signatures + 1 copy + electronic copy to UAF Governance. See http://www.uaf.edu/uafgov/faculty/cd for a complete description of the rules governing curriculum & course changes.

TRIAL COURSE OR NEW COURSE PROPOSAL

<table>
<thead>
<tr>
<th>SUBMITTED BY:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Department</td>
<td>Physics</td>
</tr>
<tr>
<td>Prepared by</td>
<td>C. P. Price</td>
</tr>
<tr>
<td>Email Contact</td>
<td>cpprice@alaska.edu</td>
</tr>
<tr>
<td>Phone</td>
<td>x6106</td>
</tr>
<tr>
<td>Faculty Contact</td>
<td>C. P. Price</td>
</tr>
</tbody>
</table>

1. **ACTION DESIRED (CHECK ONE):**
 - Trial Course [X]
 - New Course []

2. **COURSE IDENTIFICATION:**
 - Dept: PHYS
 - Course #: 39X
 - No. of Credits: 2

 Justify upper/lower division status & number of credits:
 - The prerequisites for this course include PHYS 301 and PHYS 341.
 - This course will meet for twenty-eight hours.

3. **PROPOSED COURSE TITLE:**
 - Thermal Physics

4. **To be CROSS LISTED?**
 - YES/NO [No]
 - If yes, Dept: []
 - Course #: []

 (Requires approval of both departments and deans involved. Add lines at end of form for such signatures.)

5. **To be STACKED?**
 - YES/NO [No]
 - If yes, Dept: []
 - Course #: []

6. **FREQUENCY OF OFFERING:**
 - Spring
 - Fall, Spring, Summer (Every, or Even-numbered Years, or Odd-numbered Years) — or As Demand Warrants

7. **SEMESTER & YEAR OF FIRST OFFERING (if approved):**
 - Spring 2013

8. **COURSE FORMAT:**
 - MODE OF DELIVERY (specify)
 - Lecture/discussion.

 COURSE FORMAT:
 - (check all that apply)
 - 1
 - 2
 - 3
 - 4
 - 5
 - x 6 weeks to full semester

 OTHER FORMAT (specify)
 - Mode of delivery (specify lecture, field trips, labs, etc)

9. **CONTACT HOURS PER WEEK:**
 - 2 LECTURE hours/weeks
 - 0 LAB hours/week
 - 0 PRACTICUM hours/week

 Note: # of credits are based on contact hours. 800 minutes of lecture=1 credit. 2400 minutes of lab in a science course=1 credit. 1600 minutes in non-science lab=1 credit. 2400-4800 minutes of practicum=1 credit. 2400-8000 minutes of internship=1 credit. This must match with the syllabus. See http://www.uaf.edu/uafgov/faculty/cd/credits.html for more information on number of credits.

 OTHER HOURS (specify type)

RECEIVED

MAY - 9 2012

Dean's Office
College of Natural Science & Mathematics
10. COMPLETE CATALOG DESCRIPTION including dept., number, title and credits (50 words or less, if possible):

| PHYS 393 “Thermal Physics” (2 credits) |
| Classical macroscopic thermodynamics; systems and states, equations of state, the first and second laws of thermodynamics and their consequences, entropy, enthalpy, Helmholtz and Gibbs functions, equilibrium, Maxwell’s relations. Prerequisites: PHYS F212X, F220, F301, F341; or permission of instructor. (2+0) |

11. COURSE CLASSIFICATIONS: (undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

| H = Humanities | S = Social Sciences |

| Will this course be used to fulfill a requirement for the baccalaureate core? | YES | NO | X |

| IF YES, check which core requirements it could be used to fulfill: |
| O = Oral Intensive, Format 6 | W = Writing Intensive, Format 7 | Natural Science, Format 8 |

12. COURSE REPEATABILITY:

| Is this course repeatable for credit? | YES | NO | X |

| Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time). | |

| How many times may the course be repeated for credit? | TIMES |

| If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? | CREDITS |

13. GRADING SYSTEM: Specify only one.

| LETTER: | X | PASS/FAIL: |

14. PREREQUISITES

| PHYS 212; PHYS 220; PHYS 301; PHYS 341; or permission of instructor. |

| RECOMMENDED |
| Classes, etc. that student is strongly encouraged to complete prior to this course. |

15. SPECIAL RESTRICTIONS, CONDITIONS

16. PROPOSED COURSE FEES

| Has a memo been submitted through your dean to the Provost & VCAS for fee approval? | Yes/No |

17. PREVIOUS HISTORY

| Has the course been offered as special topics or trial course previously? | Yes/No |

| If yes, give semester, year, course #, etc.: | |
18. ESTIMATED IMPACT

Physics Department is converting a 4-credit course PHYS 313 "Thermodynamics and Statistical Physics" to two 2-credit courses. There is thus no net impact on budget, facilities/space, faculty, etc.

19. LIBRARY COLLECTIONS

Have you contacted the library collection development officer (kljensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

<table>
<thead>
<tr>
<th>No</th>
<th>X</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Library support is unchanged from previous (see above).

20. IMPACTS ON PROGRAMS/DEPTS

What programs/departments will be affected by this proposed action? Include information on the Programs/Departments contacted (e.g., email, memo)

No departmental or programmatic impacts.

21. POSITIVE AND NEGATIVE IMPACTS

Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.

None.

JUSTIFICATION FOR ACTION REQUESTED

The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

The material currently presented in the 4-credit course PHYS 313 "Thermodynamics and Statistical Physics" spans two increasingly distinct areas. Students need to be exposed to topics in classical thermodynamics/thermal physics before the last year of the curriculum, but are not ready to learn the topics in statistical mechanics until the last year of the curriculum. Separating the two parts of the present course will better prepare students towards the undergraduate degree in Physics. The curricular trend at peer and peer-aspirant institutions is to separate the two topics, as is proposed here and in the associated course proposal for PHYS 493 "Statistical Physics".

APPROVALS:

[Signatures with dates]

Signature, Chair, Physics Department: [Signature] Date 5/19/2012

Signature, Chair, CNSM Curriculum Council: [Signature] Date 5/20/2012

Signature, Dean, College of Natural Science and Mathematics: [Signature] Date 5/23/12

Signature of Provost (if applicable)

Offerings above the level of approved programs must be approved in advance by the Provost.
ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

Signature, Chair, UAF Faculty Senate Curriculum Review Committee

| ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking) |
|--|---|
| Signature, Chair, Program/Department of: | Date |
| Signature, Chair, College/School Curriculum Council for: | Date |
| Signature, Dean, College/School of: | Date |
Thermal Physics

PHYSICS 393 – Spring 2013

Syllabus

Instructor: TBD

Office Hours: TBD

Class meets: 9:15 - 10:15am, Monday, 3:45 - 4:45 pm Thursday

Credits: 2 credits.

Prerequisites: PHYS F212X, PHYS F220, PHYS F301, PHYS F341; or permission of instructor.

Topics: Classical macroscopic thermodynamics; systems and states, equations of state, the first and second laws of thermodynamics and their consequences, entropy, enthalpy, Helmholtz and Gibbs functions, equilibrium, Maxwell's relations.

Grading: The course grade will be based upon the following weighting:

- Participation in Recitation 10%
- Homework 20%
- Mid-Term Exam 30%
- Final Exam 40%

Homework: There will be a homework assignment each week. The assignments are due one week after they are assigned. Thus, a homework assigned on a Thursday is due the following Thursday. The homework assignments will be posted on this web site as well as in the glass hallway case assigned to this class. You are encouraged to work with others on the homework but the work you turn in should be your own. Verbatim copies are easily detected and will result in both papers receiving a zero. (See the section on plagiarism below)

Quizzes: Several short quizzes will be given during class time throughout the semester. They will be closed book and no calculators will be allowed (or needed!).

Exams: There will be one mid-term exam (Thursday, 7 March 2013) and one final exam. The mid-term exam will be a one-hour, closed book exam given during regular class time. The final exam will be held according to the published UAF schedule.

Recitation: One half hour of the Thursday class meeting will be used for recitation. The purpose of the recitation is to provide the students with an opportunity to explore the lectures and homeworks further. It is intended that the recitation will be in the form of a group discussion of topics introduced by the students.

Learning Outcomes: Students who complete PHYS 393 will understand the concept of the state of system and the temperature of a system, be able to manipulate equations of state for adiabatic and
isothermal changes, have been introduced to the concept of entropy, be able to understand and carry out Legendre transformations among the thermodynamic potentials, and have the grounding in classical thermodynamics necessary for the study of the statistical mechanics.

Special Needs: The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials. We will work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide reasonable accomodation to students with disabilities.

Plagiarism: Plagiarism and cheating are serious matters for students and academic institutions. The UAF Honor Code (or Student Conduct Code) defines the academic standards expected at the University of Alaska and which will be followed in this class. The Code reads, in part:

"Students will not collaborate on any quizzes, in-class exams, or take-home exams that will contribute to their grade in a course, unless permission is granted by the instructor of the course. Only those materials permitted by the instructor may be used to assist in quizzes and examinations. Students will not represent the work of others as their own. A student will attribute the source of information not original with himself or herself (direct quotes or paraphrases) in compositions, theses and other reports. Not work submitted for one course may be submitted for credit in another course without the explicit approval of both instructors. Violations of the Honor Code will result in a failing grade for the assignment and, ordinarily, for the course in which the violation occurred. Moreover, violation of the Honor Code may result in suspension or expulsion."

Calendar:

Week / Lecture topics
1. Fundamental concepts: Systems and states, pressure, temperature, thermal equilibrium
2. Fundamental concepts cont'd: The zeroth law, empirical temperature, absolute zero, Kelvin scale
3. Equations of state: Ideal gas, (low density, low pressure limit), van der Waals and real gases
4. Isothermal and isobaric compressibility
5. The first law: Work (volume changes, electromagnetic, etc.), internal energy
6. The first law: Heat flow and heat capacity, C_v, C_p
7. Consequences of the first law: [T,v], [T,p], [p,v] independent; examples
8. The Carnot cycle
9. Entropy and the second law: Statements of the second law, entropy
10. Entropy and the second law cont'd: General law of increasing entropy, examples
11. Combined first and second laws: [T,v], [T,p], [p,v] independent; ideal gas, real gas
12. Joule-Thomson experiment and enthalpy
13. Thermodynamic potentials: Helmholtz and Gibbs functions
14. Thermodynamic potentials and the Maxwell relations