TRIAL COURSE OR NEW COURSE PROPOSAL

SUBMITTED BY:

<table>
<thead>
<tr>
<th>Department</th>
<th>GEOGRAPHY</th>
<th>College/School</th>
<th>SNRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Patricia Heiser</td>
<td>Phone</td>
<td>7068</td>
</tr>
<tr>
<td>Email Contact</td>
<td>pheiser@alaska.edu</td>
<td>Faculty Contact</td>
<td>Dan Mann</td>
</tr>
</tbody>
</table>

1. ACTION DESIRED (CHECK ONE):
 - Trial Course x
 - New Course

2. COURSE IDENTIFICATION:
 - Dept: GEOG
 - Course #: 694
 - No. of Credits: 4
 - Justify upper/lower division status & number of credits: Course designed for senior Geog or Nat Science majors.

3. PROPOSED COURSE TITLE:
 - Climate Change Processes: Past, Present, Future

4. To be CROSS LISTED? YES/NO
 - YES
 - If yes, Dept: ATM, BIOL

5. To be STACKED? YES/NO
 - YES
 - If yes, Dept: GEOG, ATM, BIOL

6. FREQUENCY OF OFFERING:
 - Every Fall

7. SEMESTER & YEAR OF FIRST OFFERING (if approved):
 - Fall 2011

8. COURSE FORMAT:
 - NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school's curriculum council. Furthermore, any core course compressed to less than six weeks must be approved by the core review committee.

 COURSE FORMAT:
 - (check all that apply)
 - 1 2 3 4 5 x 6 weeks to full semester

 OTHER FORMAT (specify)
 - 3 lecture hours / week and 1 discussion/recitation hour / week

9. CONTACT HOURS PER WEEK
 - 4 LECTURE hours/weeks
 - LAB hours/week
 - PRACTICUM hours/week

 Note: # of credits are based on contact hours. 800 minutes of lecture=1 credit. 2400-4800 minutes of pratcicum=1 credit. This must match with the syllabus. See http://www.uaf.edu/uafgov/faculty/cd/credits.html for more information on number of credits.

 OTHER HOURS (specify type)

10. COMPLETE CATALOG DESCRIPTION including dept., number, title and credits (50 words or less, if possible):

 GEOG/ATM/BIOL 694

 Processes of Climate Change Past, Present, and Future
 4 Credits
 Offered Fall
 This is a capstone course for the B.S. Geography Landscape Analysis and Climate Change studies option. It is also designed as a ‘synthesis’ course for Geography, NRM, or Natural Sciences undergraduates who are ready to graduate in their field of study, but wish to gain
literacy in the rapidly developing field of climate-change science. Students will gain a thorough understanding of Earth climate dynamics and change through the study of both climate history and modern climate processes. Students will be trained to critically evaluate both the validity of paleoclimatic reconstructions and climate model predictions. This is the first semester of a two-semester series of classes entitled "Climate Change Literacy".

Prerequisites: Graduate standing, or permission of instructor. (4+0)

11. COURSE CLASSIFICATIONS: (undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

H = Humanities [] S = Social Sciences []

Will this course be used to fulfill a requirement for the baccalaureate core? YES [] NO [x]

IF YES, check which core requirements it could be used to fulfill:
O = Oral Intensive, Format 6 [] W = Writing Intensive, Format 7 [] Natural Science, Format 8 []

12. COURSE REPEATABILITY:

Is this courserepeatable for credit? YES [] NO [x]

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit? TIMES

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? CREDITS

13. GRADING SYSTEM: Specify only one.

LETTER [x] PASS/FAIL:

14. PREREQUISITES

Graduate standing or permission of instructor

These will be required before the student is allowed to enroll in the course.

15. SPECIAL RESTRICTIONS, CONDITIONS

16. PROPOSED COURSE FEES

$ Has a memo been submitted through your dean to the Provost & VCAS for fee approval? Yes/No

17. PREVIOUS HISTORY

Has the course been offered as special topics or trial course previously? Yes/No

If yes, give semester, year, course #, etc.

18. ESTIMATED IMPACT

WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.

This course is a re-design of GEOG 412 and will not impact the workload of Geography faculty. The portion of the course co-taught with ATM faculty fits within the existing workload of the ATM co-instructor. There is no expected impact on facilities or space.

19. LIBRARY COLLECTIONS

Have you contacted the library collection development officer (kljensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

20. IMPACTS ON PROGRAMS/DEPTS

What programs/departments will be affected by this proposed action?

Include information on the Programs/Departments contacted (e.g., email, memo)
This course expands offerings for students in the natural/social sciences at both the graduate and undergraduate level. Since it has already been offered under a different title, and taken as an elective by other majors, no new impact is expected. By cross listing this class in multiple departments, students can take it under their own departmental designator. NOTE: This is the first phase of a planned 2 semester, integrated Climate Change course series and we are currently investigating use of a different type of course designator such as “INTG Integrated Studies”.

21. POSITIVE AND NEGATIVE IMPACTS

Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.

It is expected that any impacts on programs and departments will be positive. The goal of creating an integrated course is to improve inter-departmental collaboration and integration on campus. By co-teaching and cross-listing this course, students from multiple departments can take advantage of this class. This course represents an intentional effort to combine and integrate expertise on campus, rather than duplicating courses offered within departments. The interdisciplinary nature of Climate Change makes this a perfect topic for cross-departmental integration.

JUSTIFICATION FOR ACTION REQUESTED

The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

This trial course proposal follows an original proposed course change to GEOG 412. Since it will be partially co-taught with an innovative schedule, it was recommended to first offer it as a trial course.

This course proposal is the first step in the ongoing development of a 2 semester (8 credit) course sequence in Climate Change Literacy. Faculty from multiple departments and schools are working together to develop an integrated multi-disciplinary course drawing on expertise from across campus. The two courses will comprise a capstone experience for senior BS Geography majors and other Natural Science majors with an interest in climate change science. Additionally, we hope to eventually be able to offer it as four 2 credit modules for graduate students embarking on climate change projects, but who need background coursework in all or some of the course modules. We believe this course sequence will provide a world class opportunity to study climate change at America’s Arctic University. Our students will become literate in the many aspects of climate change, how they relate to each other, and how they affect society. We also hope and expect that this course may bring students from other universities to take advantage of this course and programs at UAF.

As a trial offering in Fall 11, we wish to offer this course, stacked and cross-listed, for 4 credits (3 lecture hrs/wk, plus 1 field trip and recitation/discussion groups). We feel that while condensed in time on the calendar (7 weeks each module), it is important to give students time to reflect and discuss course content (discussion groups =1 extra hour/wk). The differences between graduate and undergraduate workloads and expectations are outlined in separate syllabi.

A comprehensive course proposal for the full course sequence will be submitted in Spring 11. A prospectus for the full course sequence and course philosophy is attached here for reference.
APPROVALS: Signatures on file at the Governance Office.

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department of:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School Curriculum Council for:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School of:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature of Provost (if applicable)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Offerings above the level of approved programs must be approved in advance by the Provost.

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

<table>
<thead>
<tr>
<th>Signature, Chair, UAF Faculty Senate Curriculum Review Committee</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department of:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School Curriculum Council for:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School of:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATTACH COMPLETE SYLLABUS (as part of this application).
Note: The guidelines are online: http://www.uaf.edu/uafgov/faculty/cd/syllabus.html
The department and campus wide curriculum committees will review the syllabus to ensure that each of the items listed below are included. If items are missing or unclear, the proposed course change will be denied.

SYLLABUS CHECKLIST FOR ALL UAF COURSES
During the first week of class, instructors will distribute a course syllabus. Although modifications may be made throughout the semester, this document will contain the following information (as applicable to the discipline):

1. Course information:
 - Title, □ number, □ credits, □ prerequisites, □ location, □ meeting time (make sure that contact hours are in line with credits).

2. Instructor (and if applicable, Teaching Assistant) information:
 - Name, □ office location, □ office hours, □ telephone, □ email address.

3. Course readings/materials:
 - Course textbook title, □ author, □ edition/publisher.
 - Supplementary readings (indicate whether □ required or □ recommended) and □ any supplies required.

4. Course description:
 - Content of the course and how it fits into the broader curriculum;
 - Expected proficiencies required to undertake the course, if applicable.
 - Inclusion of catalog description is strongly recommended, and
 - Description in syllabus must be consistent with catalog course description.

5. □ Course Goals (general), and (see #6)

6. □ Student Learning Outcomes (more specific)

7. Instructional methods:
 - Describe the teaching techniques (eg: lecture, case study, small group discussion, private instruction, studio instruction, values clarification, games, journal writing, use of Blackboard, audio/video conferencing, etc.).

8. Course calendar:
 - A schedule of class topics and assignments must be included. Be specific so that it is clear that the instructor has thought this through and will not be making it up on the fly (e.g. it is not adequate to say “lab”. Instead, give each lab a title that describes its content). You may call the outline Tentative or Work in Progress to allow for modifications during the semester.

9. Course policies:
 - Specify course rules, including your policies on attendance, tardiness, class participation, make-up exams, and plagiarism/academic integrity.

10. Evaluation:
 - Specify how students will be evaluated, □ what factors will be included, □ their relative value, and □ how they will be tabulated into grades (on a curve, absolute scores, etc.)

11. Support Services:
 - Describe the student support services such as tutoring (local and/or regional) appropriate for the course.

12. Disabilities Services:
 - The Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials.
 - State that you will work with the Office of Disabilities Services (208 WHIT, 474-5655) to provide reasonable accommodation to students with disabilities.”
GEOGRAPHY (ATM/BIO) 694
Climate Change Processes: Past, Present, and Future
4 CREDITS

Instructors:

Dr. Daniel Mann (primary), Geography Program, School of Natural Resources, UAF
dhmann@alaska.edu, phone: 474-6929, Office: Scenario Network Arctic Planning, Denali Building,
Office Hours: MWF 9:30-10:30 and by appointment

Dr. Uma Bhatt Department of Atmospheric Sciences, 474-2662, bhatt@gi.alaska.edu,
IARC 307 Office Hours: T-Th – 12:00-1:00PM and by appointment (send email)

Meeting: Course meets 3 lectures hours per week + 1 hour discussion group/recitation
Time and location TBA

Course Description
This course is a survey of climate change science extending from the paleo-record to modern
climate dynamics and modeling. The class consists of two distinct but integrated topical
‘modules’. The first seven weeks will explore the paleoclimatic changes that have occurred on
planet Earth, using the climatic history of the past to better understand current and future climatic
changes. The second half of the semester introduces first principles of climate dynamics and
predictive climate models and then applies these principals to studies of changing environments,
geographic implications, and policy issues.

Course Prerequisites: Graduate standing with bachelors in natural or social sciences, or
permission of instructor.

Course Objectives: This course is designed for incoming graduate students, from various
scientific disciplines who find themselves working on climate change related research. It will
provide students a sound background understanding of the mechanisms, and models of
climate dynamics as well as the history of climate change. Students will gain a thorough
understanding of Earth climate dynamics and change through the study of both climate history
and modern climate processes. Students will be trained to critically evaluate both the validity of
paleoclimatic reconstructions and climate model predictions. This is the first semester of a two-
semester series of classes entitled ”Climate Change Literacy”.

Instructional / Teaching Methods: This class will be a lecture course with weekly discussion
groups and one weekend field trip. Discussion groups will require summary and discussion of
assigned readings from the current scientific literature.

Required Texts:
William F. Ruddiman, Earth’s Climate Past and Future. Second Edition 2008,
Dennis Hartmann, Global Physical Climatology (The International Geophysics Series, Vol 56)
IPCC Report: Climate Change 2007: The Scientific Basis, downloadable free
Student Learning Outcomes:
Students who are successful in this class will learn these things:

- The basic climate history of Earth including the details of events that occurred during the last 100,000 years, with emphasis on Last Glacial Maximum to Holocene transition.
- A basic understanding of how the atmosphere, ocean, cryosphere, and biosphere interacted in the course of climate changes in the past.
- The basic concepts of climate dynamics including: global energy balance, surface energy balance, hydrological cycle, atmospheric and oceanic general circulation as related to climate, past climate, climate feedbacks, climate models, and natural and anthropogenic climate variability/change.

By the end of this class, students will:

- Be able to **critically review and evaluate** journal articles in the mainstream paleoclimate and climate change scientific literature
- Be able to discuss intelligently paleo- and current climate-change issues.
- **Apply concepts from this class to their research, and share perspectives from their research field with the class.**

Course Plan:
The Tuesday lectures will be conducted jointly with ATM 456/656, and in the second half of the semester will consist of introduction to concepts of physical climatology (Dr. Bhatt). On Thursdays the ATM and GEOG students will meet separately to cover more specific disciplinary subject matter. For GEOG 412 this subject material will include case studies and/or recent literature that involve the current week’s topic and/or implications of the material for the geographic and environmental impacts of climate change.

Exams will be prepared by the key course instructor (Bhatt for ATM and Mann for GEOG). Homework and term paper assignments will also be different for ATM656 and GEOG 412 to emphasize the different expectations in the two courses.

On Fridays, the two groups will meet together in a discussion session. These sessions will include the discussion of journal articles, sharing of student project work, and exchange of information regarding their respective Thursday class meeting. A specific intent of these sessions is to foster peer-teaching skills in graduate students.

Paleoclimate Field Trip: Mandatory weekend field trip to Isabel Pass with stops at important paleo-climate sites in Interior Alaska. Stops will include loess sections, paleo-dune fields, Pleistocene and Holocene moraines, and an examination of lake sediments. Students will be prepared with readings ahead of time, will participate in group discussions, and will complete a field notebook.

SCHEDULE OF LECTURES AND DISCUSSION GROUPS

- J - signifies joint class meeting with ATM 456/65
- S – signifies separate class meetings in which:
 - GEOG class explores the *applications* of concepts to geographic/environmental Earth systems.
 - ATM class will explore more in depth climate dynamics concepts and problem sets.

Fridays - ATM and GEOG students meet to exchange information and view points on Thursday’s special topics. The Friday sessions will usually be joint, but may occasionally meet separately. In general these sessions will develop the skills needed to communicate with a wider audience (see above).
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Tuesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Key Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction to Paleoclimate Reconstruction</td>
<td>J - Mann</td>
<td>J - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 2</td>
<td>Precambrian/Mesozoic Climates</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 3</td>
<td>Orbital Scale Climate Change</td>
<td>J - Mann</td>
<td>J - Mann</td>
<td>Field trip GEO students</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 4</td>
<td>Pleistocene Ice Ages</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 5</td>
<td>Gases Feedbacks</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 6</td>
<td>LGM and Deglacial Climate Change</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 7</td>
<td>The Holocene</td>
<td>J - Mann</td>
<td>EXAM 1</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 8</td>
<td>Global Energy Balance</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 9</td>
<td>Radiative Equilibrium</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 10</td>
<td>Surface Energy Balance</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 11</td>
<td>Atmospheric General Circulation</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 12</td>
<td>Climate Feedbacks</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 13</td>
<td>Climate Modeling</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 14</td>
<td>Current issues of Anthropogenic Climate Change</td>
<td>J - Bhatt</td>
<td>EXAM 2</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
</tbody>
</table>
Exams, Assignments and Grading:

Exam 1 Paleoclimates 15%
Exam 2 Climate Dynamics 15%
Field Trip Report 15%
Literature Search 10%
Article Review 10%
Semester Project 20%
 Project Presentation 15%

Exams will cover lecture materials and will be in multiple-choice, short answer and essay format. Students will conduct a literature search in a topic of their choosing. Review and present one article for discussion. Students will work on a semester-length term paper on a topic chosen in consultation with instructor, a 30 minute presentation will be required. Details and expectations regarding article review assignments, field trip report, and semester project will be posted on Blackboard.

GRADUATE vs UNDERGRAD EXPECTATIONS AND GRADING
1) Two tier exam structure, graduate students will be tested on basic lecture material, but will have an additional take-home component. Graduate exams will be graded with different rubric and with higher expectations.

2) Grad student article reviews will require review of 2-4 journal articles, undergrads will review 1 paper (with instructor guidance). Grad students will review longer and more sophisticated articles, will have different assignment criteria, and will be evaluated with a different rubric and higher expectations.

3) Graduate student semester papers will be 10 pages, undergraduate 6 pages.

4) Graduate students will give 30 minute presentations, each leading at least one discussion session.

5) Graduate students are expected to integrate course material into their research and/or contribute perspectives relative to their research in the course discussions.

6) Graduate students will be expected to mentor one undergraduate, helping them review a journal article.

Course grades will be assigned as indicated at the table below. Course %’s are for THIS course only and may vary with different instructors. Grade point values are indicated on the table as well. Please see “Academics and Regulations” section of UAF 2007-2008 Catalogue.

<table>
<thead>
<tr>
<th>grade</th>
<th>%</th>
<th>GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>100-97</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>96-92</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>91-90</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>89-87</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>86-82</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>81-80</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>79-77</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>76-72</td>
<td>2.0</td>
</tr>
<tr>
<td>C-</td>
<td>71-70</td>
<td>1.7</td>
</tr>
<tr>
<td>D+</td>
<td>69-67</td>
<td>1.3</td>
</tr>
<tr>
<td>D</td>
<td>66-62</td>
<td>1.0</td>
</tr>
<tr>
<td>D-</td>
<td>61-60</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Grade Expectations: All grades are determined on an absolute score as above (with no curve) in general, grades will reflect the following about your class performance:

A = 90-100 percent: outstanding work, mastery of topic
B = 80-89 percent: above average work, all assignments completed well
C = 70-79 percent: average, all or most assignments completed, most work satisfactory
D = 60-69 percent: pass, unsatisfactory or missing work
F = less than 60 percent: failure to meet requirements of course

Support and Disabilities Services: The UAF Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials. The course instructors will work with the Office of Disabilities Services to provide reasonable accommodation to students with disabilities. Please notify the instructor of any special needs.

Plagiarism etc: Plagiarism and cheating are matters of serious concern for students and academic institutions. This is true in this class as well. The UAF Honor Code (or Student Code of Conduct) defines academic standards expected at the University of Alaska Fairbanks, which will be followed in this class. (Taken from the UAF plagiarism web site, which has many links with good information about this topic).

Extra Credit: Extra credit is not an option in this course except under unusual circumstances.
GEOGRAPHY (ATM/BIO) 494
Climate Change Processes: Past, Present, and Future
4 CREDITS

Instructors:

Dr. Daniel Mann (primary), Geography Program, School of Natural Resources, UAF
dhmann@alaska.edu, phone: 474-6929, Office: Scenario Network Arctic Planning, Denali Building,
Office Hours: MWF 9:30-10:30 and by appointment

Dr. Uma Bhatt, Department of Atmospheric Sciences, 474-2662, bhatt@gi.alaska.edu,
IARC 307 Office Hours: T-Th – 12:00-1:00PM and by appointment (send email)

Meeting: Course meets 3 lectures hours per week + 1 hour discussion group/recitation
Time and location TBA

Course Description
This course is a survey of climate change science extending from the paleo-record to modern
climate dynamics and modeling. The class consists of two distinct but integrated topical
‘modules’. The first seven weeks will explore the paleoclimatic changes that have occurred on
planet Earth, using the climatic history of the past to better understand current and future climatic
changes. The second half of the semester introduces first principles of climate dynamics and
predictive climate models and then applies these principals to studies of changing environments,
geographic implications, and policy issues.

Course Prerequisites: Senior standing in a major within Geography or Natural Sciences; or
instructor’s permission.

Course Objectives: This is a capstone course for the B.S. Geography Landscape Analysis and
Climate Change studies option. It is also designed as a ‘synthesis’ course for Geography, NRM,
or Natural Sciences undergraduates who are ready to graduate in their field of study, but wish to
gain literacy in the rapidly developing field of climate-change science. Students will gain a
thorough understanding of Earth climate dynamics and change through the study of both climate
history and modern climate processes. Students will be trained to critically evaluate both the
validity of paleoclimatic reconstructions and climate model predictions. This is the first semester
of a two-semester series of classes entitled “Climate Change Literacy”.

Instructional / Teaching Methods: This class will be a lecture course with weekly discussion
groups and one weekend field trip. Discussion groups will require summary and discussion of
assigned readings from the current scientific literature.

Required Texts:
William F. Ruddiman, Earth’s Climate Past and Future. Second Edition 2008,

Dennis Hartmann, Global Physical Climatology (The International Geophysics Series, Vol 56)

IPCC Report: Climate Change 2007: The Scientific Basis, downloadable free
Student Learning Outcomes:
Students who are successful in this class will learn these things:

- The basic climate history of Earth including the details of events that occurred during the last 100,000 years, with emphasis on Last Glacial Maximum to Holocene transition.
- A basic understanding of how the atmosphere, ocean, cryosphere, and biosphere interacted in the course of climate changes in the past.
- The basic concepts of climate dynamics including: global energy balance, surface energy balance, hydrological cycle, atmospheric and oceanic general circulation as related to climate, past climate, climate feedbacks, climate models, and natural and anthropogenic climate variability/change.

By the end of this class, students will:

- Be able to find and read journal articles in the mainstream paleoclimate and climate change literature
- Be able to discuss intelligently paleo- and current climate-change issues.
- Apply concepts from this class to their research (if applicable)

Course Plan:
The Tuesday lectures will be conducted jointly with ATM 456/656, and in the second half of the semester will consist of introduction to concepts of physical climatology (Dr. Bhatt). On Thursdays the ATM and GEOG students will meet separately to cover more specific disciplinary subject matter. For GEOG 412 this subject material will include case studies and/or recent literature that involve the current week’s topic and/or implications of the material for the geographic and environmental impacts of climate change.

Exams will be prepared by the key course instructor (Bhatt for ATM and Mann for GEOG). Homework and term paper assignments will also be different for ATM656 and GEOG 412 to emphasize the different expectations in the two courses.

On Fridays, the two groups will meet together in a discussion session. These sessions will include the discussion of journal articles, sharing of student project work, and exchange of information regarding their respective Thursday class meeting. A specific intent of these sessions is to foster peer-teaching skills in graduate students.

Paleoclimate Field Trip: Mandatory weekend field trip to Isabel Pass with stops at important paleo-climate sites in Interior Alaska. Stops will include loess sections, paleo-dune fields, Pleistocene and Holocene moraines, and an examination of lake sediments. Students will be prepared with readings ahead of time, will participate in group discussions, and will complete a field notebook.

SCHEDULE OF LECTURES AND DISCUSSION GROUPS

- **J** - signifies joint class meeting with ATM 456/65
- **S** – signifies separate class meetings in which:
 - GEOG class explores the *applications* of concepts to geographic/environmental Earth systems.
 - ATM class will explore more in depth climate dynamics concepts and problem sets.
Fridays - ATM and GEOG students meet to exchange information and view points on Thursday’s special topics. The Friday sessions will usually be joint, but may occasionally meet separately. In general these sessions will develop the skills needed to communicate with a wider audience (see above).

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Tuesday 1.5 hours</th>
<th>Thursday 1.5 hours</th>
<th>Friday 1 hour</th>
<th>Key Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction to Paleoclimate Reconstruction</td>
<td>J - Mann</td>
<td>J - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 2</td>
<td>Precambrian/Mesozoic Climates</td>
<td>J - Mann</td>
<td>S- Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 3</td>
<td>Orbital Scale Climate Change</td>
<td>J - Mann</td>
<td>J - Mann</td>
<td>Field trip GEO students</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 4</td>
<td>Pleistocene Ice Ages</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 5</td>
<td>Gases Feedbacks</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 6</td>
<td>LGM and Deglacial Climate Change</td>
<td>J - Mann</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 7</td>
<td>The Holocene</td>
<td>J - Mann</td>
<td>EXAM 1</td>
<td>J - Bhatt & Mann</td>
<td>Ruddiman</td>
</tr>
<tr>
<td>Week 8</td>
<td>Global Energy Balance</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 9</td>
<td>Radiative Equilibrium</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 10</td>
<td>Surface Energy Balance</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 11</td>
<td>Atmospheric General Circulation</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 12</td>
<td>Climate Feedbacks</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 13</td>
<td>Climate Modeling</td>
<td>J - Bhatt</td>
<td>S - Mann</td>
<td>J - Bhatt & Mann</td>
<td>Hartmann</td>
</tr>
<tr>
<td>Week 14</td>
<td>Current issues of Anthropogenic Climate</td>
<td>J - Bhatt</td>
<td>EXAM 2</td>
<td>J - Bhatt &</td>
<td>Hartmann</td>
</tr>
</tbody>
</table>
Exams, Assignments and Grading:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1 Paleoclimates</td>
<td>15%</td>
</tr>
<tr>
<td>Exam 2 Climate Dynamics</td>
<td>15%</td>
</tr>
<tr>
<td>Field Trip Report</td>
<td>15%</td>
</tr>
<tr>
<td>Literature Search</td>
<td>10%</td>
</tr>
<tr>
<td>Article Review</td>
<td>10%</td>
</tr>
<tr>
<td>Semester Project</td>
<td>20%</td>
</tr>
<tr>
<td>Project Presentation</td>
<td>15%</td>
</tr>
</tbody>
</table>

Exams will cover lecture materials and will be in multiple-choice, short answer and essay format. Students will conduct a literature search in a topic of their choosing. Review and present one article for discussion. Students will work on a semester-length term paper on a topic chosen in consultation with instructor, a 15 minute presentation will be required. Details and expectations regarding article review assignments, field trip report, and semester project will be posted on Blackboard.

GRADUATE vs UNDERGRAD EXPECTATIONS AND GRADING

1) Two tier exam structure, graduate students will be tested on basic lecture material, but will have an additional take-home component. Graduate exams will be graded with different rubric and with higher expectations.

2) Grad student article reviews will require review of 2-4 journal articles, undergrads will review 1 paper (with instructor guidance). Grad students will review longer and more sophisticated articles, will have different assignment criteria, and will be evaluated with a different rubric and higher expectations.

3) Graduate student semester papers will be 10 pages, undergraduate 5-6 pages.

4) Graduate students will give 30 minute presentations, each leading at least one discussion session.

5) Graduate students are expected to integrate course material into their research and/or contribute perspectives relative to their research in the course discussions.

6) Graduate students will be expected to mentor one undergraduate, helping them review a journal article.

Course grades will be assigned as indicated at the table below. Course %’s are for THIS course only and may vary with different instructors. Grade point values are indicated on the table as well. Please see “Academics and Regulations” section of UAF 2007-2008 Catalogue.

<table>
<thead>
<tr>
<th>Grade</th>
<th>%</th>
<th>GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>100-97</td>
<td>4.0</td>
</tr>
<tr>
<td>A</td>
<td>96-92</td>
<td>4.0</td>
</tr>
<tr>
<td>A-</td>
<td>91-90</td>
<td>3.7</td>
</tr>
<tr>
<td>B+</td>
<td>89-87</td>
<td>3.3</td>
</tr>
<tr>
<td>B</td>
<td>86-82</td>
<td>3.0</td>
</tr>
<tr>
<td>B-</td>
<td>81-80</td>
<td>2.7</td>
</tr>
<tr>
<td>C+</td>
<td>79-77</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>76-72</td>
<td>2.0</td>
</tr>
</tbody>
</table>
C- 71-70 1.7
D+ 69-67 1.3
D 66-62 1.0
D- 61-60 0.7

Grade Expectations: All grades are determined on an absolute score as above (with no curve). In general, grades will reflect the following about your class performance:

- **A** = 90-100 percent: outstanding work, mastery of topic
- **B** = 80-89 percent: above average work, all assignments completed well
- **C** = 70-79 percent: average, all or most assignments completed, most work satisfactory
- **D** = 60-69 percent: pass, unsatisfactory or missing work
- **F** = less than 60 percent: failure to meet requirements of course

Support and Disabilities Services: The UAF Office of Disability Services implements the Americans with Disabilities Act (ADA), and insures that UAF students have equal access to the campus and course materials. The course instructors will work with the Office of Disabilities Services to provide reasonable accommodation to students with disabilities. Please notify the instructor of any special needs.

Plagiarism etc: Plagiarism and cheating are matters of serious concern for students and academic institutions. This is true in this class as well. The UAF Honor Code (or Student Code of Conduct) defines academic standards expected at the University of Alaska Fairbanks, which will be followed in this class. (Taken from the UAF plagiarism web site, which has many links with good information about this topic).

Extra Credit: Extra credit is not an option in this course except under unusual circumstances.