Submit originals (including syllabus) and one copy and electronic copy to the Faculty Senate Office
See http://www.uaf.edu/uafgov/faculty-senate/curriculum/course-degree-procedures/ for a complete description of the rules
governing curriculum & course changes.

CHANGE COURSE (MAJOR) and DROP COURSE PROPOSAL
Attach a syllabus, except if dropping a course.

SUBMITTED BY:
<table>
<thead>
<tr>
<th>Department</th>
<th>Elementary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Jann Laiti/Carol Barnhardt</td>
</tr>
<tr>
<td>Email Contact</td>
<td>jmlaiti@alaska.edu, cabarnhardt@alaska.edu</td>
</tr>
<tr>
<td>College/School</td>
<td>School of Education</td>
</tr>
<tr>
<td>Phone</td>
<td>6447/6457</td>
</tr>
<tr>
<td>Faculty Contact</td>
<td>Carol Barnhardt</td>
</tr>
</tbody>
</table>

1. COURSE IDENTIFICATION: As the course now exists.

<table>
<thead>
<tr>
<th>Dept</th>
<th>Course #</th>
<th>No. of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>479/688</td>
<td>2</td>
</tr>
</tbody>
</table>

 COURSE TITLE: Science Methods and Curriculum Development

2. ACTION DESIRED: Changes to be made to the existing course.

<table>
<thead>
<tr>
<th>Change Course</th>
<th>If Change, indicate below what change.</th>
<th>Drop Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>DESCRIPTION</th>
<th>FREQUENCY OF OFFERING</th>
<th>COURSE CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PREREQUISITES | CREDITS (including credit distribution) | CROSS-LISTED | STACKED (400/600) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Requires approval of both departments and deans involved. Add lines at end of form for such signatures.)

OTHER (please specify)

To take effect summer 2013.

3. COURSE FORMAT

NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school's curriculum council and the appropriate Faculty Senate curriculum committee. Furthermore, any core course compressed to less than six weeks must be approved by the core review committee.

COURSE FORMAT:
(check all that apply)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6 weeks to full semester</th>
</tr>
</thead>
</table>

OTHER FORMAT (Specify all that apply)

Mode of delivery (specify lecture, field trips, labs, etc)

4. COURSE CLASSIFICATIONS: (Undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

H = Humanities S = Social Sciences

Will this course be used to fulfill a requirement for the baccalaureate core?

YES NO X

IF YES, check which core requirements it could be used to fulfill:
5. COURSE REPEATABILITY:

<table>
<thead>
<tr>
<th>Is this course repeatable for credit?</th>
<th>YES</th>
<th>NO</th>
<th>x</th>
</tr>
</thead>
</table>

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit? TIMES

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? CREDIT

6. CURRENT CATALOG DESCRIPTION AS IT APPEARS IN THE CATALOG: including dept., number, title and credits

ED F479 Science Methods and Curriculum Development

2 Credits
Offered Spring

Study and application in the classroom of the best practices from research-based strategies for the teaching and learning of science concepts, content and methods for students in elementary classrooms with diverse populations. Requires development and classroom implementation of science unit. Classroom internship required. Prerequisites: Admission to internship year; concurrent enrollment in other internship year courses; Alaska passing scores for three Praxis I exams. Stacked with ED F688. (2+0)

7. COMPLETE CATALOG DESCRIPTION AS IT WILL APPEAR WITH THESE CHANGES: (Underline new wording, strike through old wording and use complete catalog format including dept., number, title, credits and cross-listed and stacked.) PLEASE SUBMIT NEW COURSE SYLLABUS. For stacked courses the syllabus must clearly indicate differences in required work and evaluation for students at different levels.

ED F479 Science Methods and Curriculum Development

2.3 Credits
Offered Spring

Study and application in the classroom of the best practices from research-based strategies for the teaching and learning of science concepts, content and methods for students in elementary classrooms with diverse populations. Requires development and classroom implementation of science unit. Classroom internship required. Prerequisites: Admission to internship year; concurrent enrollment in other internship year courses; Alaska passing scores for three Praxis I exams. Stacked with ED F688. (2.5+0+0.5) (2.5 + 0 + 1.5)

8. IS THIS COURSE CURRENTLY CROSS-LISTED?

<table>
<thead>
<tr>
<th>YES/NO</th>
<th>No</th>
</tr>
</thead>
</table>

If Yes, DEPT [] NUMBER []

(Requires written notification of each department and dean involved. Attach a copy of written notification.)
5. COURSE REPEATABILITY:

Is this course repeatable for credit? [] YES [] NO x

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit? _ TIMES

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? _ CREDITS

6. CURRENT CATALOG DESCRIPTION AS IT APPEARS IN THE CATALOG: including dept., number, title and credits

ED F688 Science Methods and Curriculum Development

2 Credits
Offered Spring

Study and application in the classroom of the best practices from research-based strategies for the teaching and learning of science concepts, content and methods for students in elementary classrooms with diverse populations. Requires development and classroom implementation of science unit. Classroom internship required. Prerequisites: Admission to the post-baccalaureate elementary licensure program; graduate standing; or permission of instructor. Stacked with ED F479. (2+0)

7. COMPLETE CATALOG DESCRIPTION AS IT WILL APPEAR WITH THESE CHANGES: (Underline new wording strike-through-old-wording and use complete catalog format including dept., number, title, credits and cross-listed and stacked.) PLEASE SUBMIT NEW COURSE SYLLABUS. For stacked courses the syllabus must clearly indicate differences in required work and evaluation for students at different levels.

ED F688 Science Methods and Curriculum Development

2 Credits
Offered Spring

Study and application in the classroom of the best practices from research-based strategies for the teaching and learning of science concepts, content and methods for students in elementary classrooms with diverse populations. Requires development and classroom implementation of science unit. Classroom internship required. Prerequisites: Admission to the post-baccalaureate elementary licensure program; graduate standing; or permission of instructor. Stacked with ED F479. (2.5+0+2.5) (2.5 + 0 + 2.5)

8. IS THIS COURSE CURRENTLY CROSS-LISTED? [] YES [] NO

If Yes, DEPT ______ NUMBER ______

(Requires written notification of each department and dean involved. Attach a copy of written notification.)
9. GRADING SYSTEM: Specify only one
 LETTER x PASS/FAIL:

10. ESTIMATED IMPACT
 WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.
 No impact.

11. LIBRARY COLLECTIONS
 Have you contacted the library collection development officer (kljensen@alaska.edu, 474-6695) with
 regard to the adequacy of library/media collections, equipment, and services available for the
 proposed course? If so, give date of contact and resolution. If not, explain why not.
 No x Yes No change.

12. IMPACTS ON PROGRAMS/DEPTS:
 What programs/departments will be affected by this proposed action?
 Include information on the Programs/Departments contacted (e.g., email, memo)
 None other than the School of Education.

13. POSITIVE AND NEGATIVE IMPACTS
 Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.
 None.

JUSTIFICATION FOR ACTION REQUESTED
The purpose of the department and campus-wide curriculum committees is to scrutinize course change
and new course applications to make sure that the quality of UAF education is not lowered as a result
of the proposed change. Please address this in your response. This section needs to be self-
exploratory. If you ask for a change in # of credits, explain why; are you increasing the amount of
material covered in the class? If you drop a prerequisite, is it because the material is covered
elsewhere? If course is changing to stacked (400/600), explain higher level of effort and performance
required on part of students earning graduate credit. Use as much space as needed to fully justify the
proposed change and explain what has been done to ensure that the quality of the course is not
compromised as a result.

Teacher education programs are under a great deal of scrutiny to assure policy makers and the general public
that future elementary teachers have sufficient content knowledge and skills in the areas in which they have
teaching responsibilities and that they have clearly defined coursework to assure that they also have
opportunities to acquire the methods needed to successfully teach and develop meaningful curriculum in
multiple content areas.

UAF elementary teacher education interns (i.e., students in their senior year of the BA in Elementary Education
degree and elementary post-baccalaureate students completing their year-long internship) currently DO have
these opportunities and requirements but this has not been accurately reflected in the current distribution of
credits during their internship year. As an artifact of the process of development of the original BAE degree, the
number of hours that interns spend in their elementary classroom placements and in their university methods
and curriculum development courses has never been accurately reflected in the course credit allocations.

It is important that we correct these inaccuracies now for the following reasons:

1. External agencies (political entities and accreditation groups) now want more specific evidence that
elementary teacher education students have dedicated coursework and internship requirements to
prepare them to teach Reading, Writing, Math, Science, PE/Health and the Arts. This evidence needs to
be reflected more directly and more accurately on our program requirements than it has been. Some of
the work currently completed by students as part of ED 468 (a 6 credit course currently co-taught by 4
instructors) is being distributed to other courses so that the content of the courses is more clearly
evident to reviewers.
To be eligible for the newly created Alaska Performance Scholarship, university students must be enrolled in 30 credits per academic year. The intern year requirements in the current BA in Elementary Education degree include only 26 credits. These 26 credits are not an accurate representation of the amount of coursework and fieldwork that students actually complete.

APPROVALS: (Additional signature blocks may be added as necessary.)

<table>
<thead>
<tr>
<th>Signature, Chair, Program/Department of: Elementary Education</th>
<th>Carol Barnhardt</th>
<th>Date</th>
<th>2-17-12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature, Chair, College/School Curriculum Council for: Education</th>
<th>Amy</th>
<th>Date</th>
<th>2/17/12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature, Dean, College/School of: Education</th>
<th>Allan Morotti, Interim Dean</th>
<th>Date</th>
<th>2/17/12</th>
</tr>
</thead>
</table>

Signature of Provost (if applicable)
Offerings above the level of approved programs must be approved in advance by the Provost.

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE.

<table>
<thead>
<tr>
<th>Signature, Chair, UAF Faculty Senate Curriculum Review Committee</th>
<th>Date</th>
</tr>
</thead>
</table>
APPROVALS: (Additional signature blocks may be added as necessary.)

Signature, Chair, Program/Department of: Elementary Education
Carol Barnhart

date 2/17/12

Signature, Chair, College/School Curriculum Council for: Education
Allan Morotti, Interim Dean

date 2/17/12

Signature, Dean, College/School of: Education

Date

Signature of Provost (if applicable)
Offerings above the level of approved programs must be approved in advance by the Provost.

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE.

Signature, Chair, UAF Faculty Senate Curriculum Review Committee

date

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

Signature, Chair,
Program/Department of:

date

Signature, Chair, College/School Curriculum Council for:
ED 479/688
SCIENCE METHODS AND CURRICULUM DEVELOPMENT
ON-CAMPUS (2.5+0.0+0.5)

This is a course that has both lecture (i.e., university course time) and internship (i.e., elementary classroom time) requirements. Specific times for university course meeting times and elementary classroom internship times are included on the year-long internship calendar that is distributed each August by the UAF Department of Elementary Teacher Education.

COURSE INFORMATION

Credits: 3
Prerequisites: Participating in the Internship Year or Permission of Instructor

Location:
- OUP Room 150
- Blackboard http://classes.uaf.edu

Meeting Time: Dates and times noted on the internship calendar and on the syllabus calendar

INSTRUCTOR INFORMATION

Instructor: Cindy Fabbri
Office: 714D Gruening Building
Office Hours: By appointment
Telephone: (907) 474-1558
Fax: (907) 474-5451
Email: cfabbri@alaska.edu

MATERIALS

http://www.project2061.org/publications/bsl/online/bolintro.htm

Annenberg Media “Video-on-Demand” (VOD) Series www.learner.org

If applicable, science textbook for your students/grades

Household materials may be required for lab investigations

Additional readings and resources TBA

COURSE DESCRIPTION

This course provides an opportunity for students to study and apply research-based strategies, considered to be best practice, for teaching and learning science. Students will focus on science content and methods appropriate for elementary classrooms with diverse populations. Students will develop and implement a science unit. Self-reflection will be emphasized in the course.

COURSE GOALS

> "Effective science teaching is more than knowing science content and some teaching strategies. Skilled teachers of science have special understandings and abilities that integrate their knowledge of science content, curriculum, learning, teaching, and students. Such knowledge, called ‘pedagogical content knowledge,’ distinguishes science knowledge of teachers from that of scientists. It is one element that defines a professional teacher of science.”

– National Science Education Standards, Chapter 4

The goal of this course is to prepare interns to be a professional teacher of science. Interns will study the various aspects of pedagogical content knowledge mentioned above. Students will become familiar with current research and recommendations for science education. Science standards and inquiry-based learning will be emphasized. Interns will have the opportunity to practice and reflect on their science learning experiences.

STUDENT LEARNING OUTCOMES

Through study, experience and reflection, students will:
- Understand methods for teaching and learning science through inquiry;
- Be familiar with National, State and local standards for content, performance & practice;
- Become adept using research-based methods/strategies for teaching and learning;
- Understand and use knowledge of learning, pedagogy and students to create appropriate, relevant learning opportunities for diverse groups of students;
- Create and use multiple assessment strategies in the context of teaching a science unit;
- Plan and implement a holistic science unit; and
- Reflect on science topics, personal ideas, future goals and experiences as a science educator.

INSTRUCTIONAL METHODS

In the spirit of inquiry, mentioned in Standard A of the NSES, it is expected that students will:
- Assess prior knowledge and perceptions about science and education;
- Ask questions;
- Research and investigate to find answers;
- Interpret what they have found;
- Apply what they have learned;
- Reflect on the experience;
- Share the new knowledge and understandings;
- Refine the ideas; and
- Work independently and collaboratively.

To facilitate individual and group learning opportunities, coursework will include, at least:
- Hands-on investigations;
- Designing, implementing and reflecting on a science unit;
- Critical reviews of literature;
- Case Studies;
- Reflections and critiques of work done by oneself and peers; and
- Group collaboration and discussion.

ASSIGNMENTS

ED 479: 1000 points possible
ED 688: 1200 points possible (complete all ED 479 requirements + independent project)*

Audio-conference/Blackboard Attendance, Preparedness and Participation
Total Points Possible = 140 (20 points per class x 7 classes)

Student attendance in class and on Blackboard is expected. With only seven classes it is essential that you make each and every class. Being prepared and participating are key elements of the learning experience. Being prepared and participating means being prepared to discuss homework assignments. Critical thinking and sharing of ideas that advance the group’s learning are expected.

Show & Tell: Bring Science Resources to Class
Total Points Possible = 60 (20 points each x 3 resources)
Bring three science resources to class to share with your colleagues. The resource (book, website, curricula, etc.) should be something not likely to be known by all of your colleagues. You will explain a bit about the resource, why it is of high quality and how to find it. At least one of your resources during the semester should be technology based.

Facilitate an In-class Presentation/Lesson
Points Possible = 100 Points (Rubric will be provided)

You will choose a lesson from the appendix of your textbook, a FNSBSD science kit, or other pre-approved resource and will teach the lesson in class. You will teach the lesson to your peers as if they were your students. Ideally, you should teach a subject/discipline (i.e. physical science, life science, earth/space science) that is different from your take home lesson and unit. Your grade will be based on peer-assessments and instructor discretion.

Develop and Teach a Science Unit
Total Points Possible = 400 (Checklist and rubric will be provided)

Draft Unit = 100 Points
The draft is graded for completeness (cover sheet, week-long overview, 5 lesson plans, summative assessment rubric, and student activity sheets) and that it is turned in on time.

Please Note: Your mentor teacher and the course instructor must approve the unit plans before you teach the unit. Please plan accordingly.

Final Unit = 300 Points
The final unit is graded for completeness (cover sheet, week-long overview, 5 lesson plans, assessment rubric, and student activity sheets), content/competencies (see science unit rubric) and implementation.

Please note: You are encouraged to photograph and/or video tape your unit. Please let your UAF supervisor/liaison know when you are teaching this week.

Science Take Home Lesson & Written Reflection
Total Points Possible = 100 (Rubric will be provided)

Teach an inquiry-based lesson to an individual child or a small group of children. Assess your experience and write a thoughtful reflection about it. Ideally, you should teach a subject/discipline (i.e. physical science, life science, earth/space science) that is different from your in-class presentation and unit.

Science Teaching: Final Reflections, Summative Assessment and Future Plans
Total Points Possible = 200 (Guidelines will be provided)
This assignment will include five daily reflections and one comprehensive reflection on teaching your science unit. In addition, students will reflect on their new understandings of science education and their future professional development goals.

* ED 688 Students: Independent Project
Total Points Possible = 200

Students will be responsible for an independent learning project. Possible activities might include designing and implementing a unique lesson with students, watching a professional development series, reading a recommended book, working with students and teachers to develop science fair projects (outside of your regular class) or other significant, approved project. Please discuss this assignment with the instructor and get approval before you begin.

EVALUATION

As outlined in the UAF catalog, the grading system is as follows:

- **A**: An honor grade, indicates originality and independent work, a thorough mastery of the subject and the satisfactory completion of more work than is regularly required.
- **B**: Indicates outstanding ability above the average level of performance (80% or better)
- **C**: Indicates a satisfactory or average level of performance. (70% or better)
- **D**: The lowest passing grade, indicates work of below-average quality and performance. (60% or better)
- **F**: Indicates failure. (Below 60%)

Grades will be posted using the following scale:

- **A**: 90-100%
- **B**: 80-89%
- **C**: 70-79%
- **D**: 60-69%
- **F**: 59% or below

As one of the culminating courses of the internship year, students are required to earn a “C” or better in order to successfully complete the licensure program. In addition to obtaining minimum grade requirements, students must meet all required ESAAP competencies in order to pass the class and continue with the internship. Any student in jeopardy of failing competencies or the class should contact the instructor as soon as possible to discuss an improvement plan.

CALENDAR
Please note, that this is a tentative schedule and it may be modified. Homework assignments listed for each class are your major assignments and you should be prepared to discuss them during class. Additional readings/work will be announced in class each week. Additional readings will be handed out in class or posted on the Blackboard site.

TBD 9:00-12:00

In class:
- What do I know about science education now? (Diagnostic Assessment)
- Course business… syllabus, etc.
- What do I teach? (NSTA Standards 1-4)
- How do I plan a science unit?
- What does a science unit look like?
- How do I write learning goals and objectives?

Homework:
- Read Text Chapter 1 (pages 12-26)
- Read Text Chapters 2, 4 and 7
- Use *Unit Template* and *Unit Planning Worksheets 1 & 2* to create a template for your unit, begin drafting unit learning goals and objectives and identify relevant standards
- ED 688 students determine what you would like to do for your independent project and talk to the instructor about it
- If applicable, prepare for in-class presentation and/or bring a resource to class

TBD 9:00-12:00

In class:
- How do I teach science? (NSTA Standards 5 and 8)

Homework:
- Read Text Chapters 5 and 6
- Read *Science Notebooks* Chapters 1-3
- Use *Unit Template* and *Unit Planning Worksheets 2* to begin drafting lesson procedures and assessments
- If applicable, prepare for in-class presentation and/or bring a resource to class

TBD 9:00-12:00

In class:
- How do I teach science? (NSTA Standards 5 and 8)

Homework:
- Read Text Chapters 3 and 10
• Use Unit Template and Unit Planning Worksheets 2 to finish drafting lesson procedures and assessments
• If applicable, prepare for in-class presentation and/or bring a resource to class

TBD 9:00-12:00

In class:
• How do students learn? (NSTA Standard 5)
• What is appropriate and differentiated instruction?
• What is relevant and responsive curriculum? (NSTA Standard 7)

Homework:
• Use Unit Template and Unit Planning Worksheets 3 to draft differentiation sections of lesson plans
• Finish the draft of your science unit. Bring two copies to class, one for peer review in class and one to submit to the instructor
• Make preliminary plans to teach a lesson from the back of the textbook during the week of Feb 14-18.
• If applicable, prepare for in-class presentation and/or bring a resource to class

TBD 9:00-12:00

In class:
• DRAFT Unit due

Homework:
• Read Text Chapters 8 and 9
• Read evolution readings (handed-out in class)
• Read Habits of Mind for the Science Laboratory
• Complete Take Home Lesson week of Feb 14-18 and write reflection. Reflection is due February 25th.
• If applicable, prepare for in-class presentation and/or bring a resource to class

TBD 9-12

In class:
• What do I need to know about science and technology? (NSTA Standard 5)
• What do I need to know about interdisciplinary learning?
• What do I need to know about teaching evolution? (NSTA Standard 1)
• What does an inquiry classroom look like? (NSTA Standards 3 & 9)
• What do I need to know about safety? (NSTA Standard 9)
Homework:
 • Final Science Unit Due Before Teaching

TBD

Individual student appointments, if needed

TBD

No class – Teach science unit (NSTA Standard 6)

Homework:
 • Final unit and semester reflections are due April 8th
 • ED 688 Independent Projects due April 8th
 • If applicable, bring a resource to class

TBD 9:00-12:00

In class:
 • What do I know about science education now? (Summative Assessment)
 • What professional development opportunities exist? (NSTA Standard 10)
 • Final Reflections Due
 • ED 688 Independent Projects Due

Policies

As a compressed course, a great deal of information is covered each session. For this reason, attendance at all classes is expected. If an emergency situation arises and you will be missing class, please contact me before our scheduled class and we will make arrangements for you to make-up the missed work. Please let me know, if at anytime, you are having difficulties with the coursework or workload.

Students are loaned a science kit for the length of the semester from School of Education. These kits must be returned in full to receive a grade. Students not returning their kit will receive an “Incomplete” for a grade. An “Incomplete” grade will be posted for one year and then the grade turns to an “F”.

In addition, students are expected to adhere to the Student Code of Conduct (Board of Regents’ Policy 09.02.01). Students are required to conduct themselves honestly and responsibly, and to
respect the rights of others. Academic integrity is essential and expected from all students. Cheating or plagiarism is not acceptable.

SUPPORT SERVICES

If you have questions, concerns, comments, or individual needs please contact me immediately. In addition, please be aware that these other forms of assistance are also available:

Kelly Mendez
Coordinator – Elementary
474-7981
ksmendez@alaska.edu

Hillary Weller
Coordinator – Elementary
474-7981
hhweller@alaska.edu

Student Support Services (SSS)
Tel: (907) 474-6844
Email: sssp@uaf.edu

Tutoring Services:
Writing Center (907) 474-5314
Math Laboratory (907) 474-7332

DISABILITIES SERVICES

If you have a special need please notify the Office of Disability Services (474-7043) and me. I will make every effort to provide reasonable accommodations for you.