TRIAL COURSE OR NEW COURSE PROPOSAL

SUBMITTED BY:

<table>
<thead>
<tr>
<th>Department</th>
<th>College/School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Geology and Geophysics</td>
<td>College of Natural Science and Mathematics (CNSM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prepared by</th>
<th>Phone</th>
<th>Extn 1897</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anupma Prakash</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Email Contact</th>
<th>Faculty Contact</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>prakash@gi.alaska.edu</td>
<td>Anupma Prakash</td>
<td></td>
</tr>
</tbody>
</table>

1. **ACTION DESIRED**
 (CHECK ONE):
 - [] Trial Course
 - [x] New Course

2. **COURSE IDENTIFICATION**:
 - Dept: GEOS
 - Course #: 222
 - No. of Credits: 3

 Justify upper/lower division status & number of credits:
 This course will introduce fundamentals of geospatial sciences (remote sensing, geographic information systems (GIS) and global positioning systems (GPS)) at the basic level. It is targeted for students wanting to pursue advanced courses in this area. Material (lectures and labs) are therefore targeted at a 200 level. The class meets twice a week with 1hr 15 mins of lecture time followed by a 45 minute lab that includes hands-on training. Lectures and the corresponding lab sessions are related to each other and are integral to the course. This contact time allocation satisfies the UAF established requirements for 3 credits.

3. **PROPOSED COURSE TITLE**:
 - Fundamentals of Geospatial Sciences

4. **To be CROSS LISTED?**
 - YES
 - Dept: GEOG
 - Course #: 222

 (Requires approval of both departments and deans involved. Add lines at end of form for such signatures.)

5. **To be STACKED?**
 - No
 - Dept.
 - Course #

6. **FREQUENCY OF OFFERING**:
 - Every Fall
 - Fall, Spring, Summer (Every, or Even-numbered Years, or Odd-numbered Years) — or As Demand Warrants

7. **SEMESTER & YEAR OF FIRST OFFERING (if approved)**
 - Fall 2012

8. **COURSE FORMAT**:
 NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school's curriculum council. Furthermore, any core course compressed to less than six weeks must be approved by the core review committee.

 COURSE FORMAT:
 (check all that apply)
 - [] 1
 - [] 2
 - [] 3
 - [] 4
 - [x] 5
 - [] 6 weeks to full semester

 OTHER FORMAT
 (specify)
 Mode of delivery (specify lecture, field trips, labs, etc)
 - 75 mins of lecture followed by 45 mins of lab meeting twice a week for the whole semester
9. CONTACT HOURS PER WEEK:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours/Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2.5</td>
</tr>
<tr>
<td>Lab</td>
<td>1.5</td>
</tr>
<tr>
<td>Practicum</td>
<td></td>
</tr>
</tbody>
</table>

Note: # of credits are based on contact hours. 800 minutes of lecture = 1 credit. 2400 minutes of lab in a science course = 1 credit. 1600 minutes in non-science lab = 1 credit. 2400-4800 minutes of practicum = 1 credit. 2400-8000 minutes of internship = 1 credit. This must match with the syllabus. See http://www.uaf.edu/uafgov/faculty/cd/credits.html for more information on number of credits.

OTHER HOURS (specify type)
Students will spend additional time in completing homework assignments. This non-contact time will vary by students.

10. COMPLETE CATALOG DESCRIPTION including dept., number, title and credits (50 words or less, if possible):

GEOS 222: Fundamentals of Geospatial Sciences
3 Credits
Offered Fall

This course is an introduction to the principles and applications of geospatial science (remote sensing, GIS and GPS). Fundamental concepts include electromagnetic radiations, map projections, basic computer science, data formats, map-reading and map-making, etc. Practical exercises include field data collection using GPS, photo-interpretation, using image processing and GIS software packages.

Prerequisites: GEOG 111 or GEOS 101 or permission of instructor. (2.5+1.5)

11. COURSE CLASSIFICATIONS:
(undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

- H = Humanities
- S = Social Sciences

Will this course be used to fulfill a requirement for the baccalaureate core?
YES ☐ NO ☑

IF YES, check which core requirements it could be used to fulfill:
- O = Oral Intensive, Format 6
- W = Writing Intensive, Format 7
- Natural Science, Format 8

12. COURSE REPEATABILITY:

Is this course repeatable for credit?
YES ☐ NO ☑

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit?
TIMES ☑

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course?
CREDITS ☑

13. GRADING SYSTEM: Specify only one.

- LETTER: ☑
- PASS/FAIL: ☐

14. PREREQUISITES
GEOG 111 or GEOS 101 or permission of instructor.

These will be required before the student is allowed to enroll in the course.

15. SPECIAL RESTRICTIONS, CONDITIONS
None

16. PROPOSED COURSE FEES
None

Has a memo been submitted through your dean to the Provost & VCAS for fee approval?
Yes/No ☑

17. PREVIOUS HISTORY
Has the course been offered as special topics or trial course previously?
Yes/No ☑
18. ESTIMATED IMPACT

WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.

Teaching this course will require a classroom that is suited for offering a lecture directly followed by a lab. The lab component will require that there are computer systems installed with freeware and some commercial software packages (ESRI’s ArcGIS) for data processing. The WRRB 004 lab managed by the GINA facility is ideally suited for this and we have coordinated with GINA to ensure that this lab would be available. The computer systems in the GINA lab are already installed with ArcGIS licenses for other course offerings, and so there are no additional costs to run this class.

Offering this course will have some impacts on faculty and staff who are involved with teaching it who will have to make some changes to their current workload distribution. Course instructors and their respective unit heads (dept chairs, deans, and director) are cognizant of this, encourage and support this course offering, and are onboard to accommodate the workload adjustments required to offer this class. These workload adjustments have been possible because of new faculty hires and associated curricula changes in both related departments.

Geos /Geog 222 is now also added as a pre-requisite to some of the existing 300 and 400 level course in the Department of Geology and Geophysics and in the Geography Department, specifically GEOS 422; GEOS 458/658; GEOG 309; and GEOG 339. Paperwork for these minor changes is also being submitted in parallel by both departments.

19. LIBRARY COLLECTIONS

Have you contacted the library collection development officer (kljensen@alaska.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? If so, give date of contact and resolution. If not, explain why not.

<table>
<thead>
<tr>
<th>No</th>
<th>X</th>
<th>Yes</th>
</tr>
</thead>
</table>

We have not contacted the library collection development officer specifically for this course. Elements in this course are basics of remote sensing, GIS, GPS, mapping, and visualization. These are topics that the instructors have been covering at advanced levels in their other courses at UAF. Both the Rasmuson library and the Keith Mather Library are more than adequately stocked with reading.

20. IMPACTS ON PROGRAMS/DEPTS

What programs/departments will be affected by this proposed action?

Include information on the Programs/Departments contacted (e.g., email, memo)

Both the Department of Geology and Geophysics and the UA Geography Program will affected by this proposed action.

This course has been developed after extensive consultation, collaboration and focused meetings between the faculty and leadership in both departments (viz. Cary de Wit; Patricia Heiser; Dave Verbyla; Keith Cunningham; Don Atwood; Anupma Prakash; Bernard Coakley; Sarah Fowell). The purpose of these meetings was to ensure that the geospatial science course offering across the UA system were more coherent and integrated. Also, students graduating from UA with an undergraduate degree including an emphasis option in Geospatial Sciences have a consistent set of knowledge and core skills.

The group concluded that the current course offerings in geospatial sciences lacked a course on fundamental principles and skills. This course syllabus and schedule is a result of the intense brainstorming sessions. The course syllabus and outline was also presented to the wider remote sensing faculty and their input was incorporated in subsequent versions.

The deans of both the involved departments have strongly encouraged and supported the plan and efforts to bring coherence in course offerings, leveraging resources, and promoting an undergraduate emphasis option that is based on technology and is in line with the workforce needs of the State and
21. POSITIVE AND NEGATIVE IMPACTS

Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.

Positive Impacts:

- We will be able to offer effective undergraduate degrees with emphasis options in geospatial sciences.
- The course on Fundamental in Geospatial Sciences will provide the much needed basics on physical principles of geospatial sciences and will better prepare the students to take the advanced courses in this area.
- Having GEOS / GEOG 222 as pre-requisite, will raise the standards of the existing GEOS 422; GEOS 458/658; GEOG 309; and GEOG 339 classes by freeing up time to cover some advanced material and/or more hands-on training in these classes.
- Students coming out of the UA system (following the undergrad degree with emphasis option in geospatial sciences) will have a solid understanding of basic principles and consistent set of core skills in geospatial science regardless of whether they are enrolled in the emphasis within the Department of Geology and Geophysics or the UA Geography Program.

Negative Impacts:

- None known and none anticipated.

JUSTIFICATION FOR ACTION REQUESTED

The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

Most departments at UAF are struggling with limited budgets, limited faculty to teach courses, and inability to offer some programs they wish to offer. The only way to overcome these challenges is by cooperating across departments (and across campuses), leveraging resources, and finding creative solutions.

This course proposal is a result of such a cooperation and collaboration between the faculty and leadership of the Department of Geology and Geophysics and the UA Geography Program. With the increasing demand from the industry in the area of geospatial science (that involves remote sensing, GIS, GPS) students in both departments are increasingly gravitating toward taking more classes in these thematic areas. Students in both departments need some common core skills, followed by some specialized application courses that are specific for the respective departments.

Therefore, after several planning meetings and extensive efforts to leverage resources, the undergraduate degree offerings in both departments were revised to include an option to take a geospatial sciences emphasis track. A common requirement for students taking this track is completion of this cross-listed course GEOS/GEOG 222 on Fundamentals of Geospatial Sciences.

As a result of these revisions and addition of this required class for geospatial science emphasis option, we are certain that the quality of the program offering will be much improved.
of this cross-listed course GEOS/GEOG 222 on Fundamentals of Geospatial Sciences.

As a result of these revisions and addition of this required class for geospatial science emphasis option, we are certain that the quality of the program offering will be much improved.

APPROVALS:

Signature, Chair, Department of Geology and Geophysics:

Signature, Chair, College of Natural Sciences and Mathematics: CNSM

Signature, Dean, College of Natural Sciences and Mathematics: CNSM

Signature of Provost (if applicable)
Offerings above the level of approved programs must be approved in advance by the Provost.

ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

Signature, Chair, UAF Faculty Senate Curriculum Review Committee

ADDITIONAL SIGNATURES: (As needed for cross-listing and/or stacking)

Signature, Chair, UA Geography Program, Chair, Geog Dept:

Signature, Chair, School of Natural Resources and Agricultural Sciences:

Signature, Dean, School of Natural Resources and Agricultural Sciences:

Date

Date

Date

Date
Syllabus for GEOS/GEOG 222 – Fundamentals of Geospatial Sciences

1. Course information:

 Title: Fundamentals of Geospatial Sciences
 Number: GEOS 222; GEOG 222
 Credits: 3
 Prerequisites: GEOG 111 or GEOS 101 or permission of instructor
 Location: Lectures in WRRB Computer Lab; Room 004
 Labs in WRRB Computer Lab; Room 004
 Term: Every Fall
 Meeting time: Lectures: Monday and Wednesday, 2.00 pm to 3.15 pm
 Lab: Monday and Wednesday, 3.15 pm to 4.00 pm

2. Instructor Information (Proposed):

 Fall (Odd Years – Geography-lead instructor)

 Dave Verbyla
 Office: O'Neill 366
 Telephone: 907-4745553
 Email: dlverbyla@alaska.edu
 Office hrs: ad hoc / by appointment

 Donald Atwood
 Office: GI-206, UAF
 Telephone: 907-4747380
 Email: dkatwood@alaska.edu
 Office hrs: ad hoc / by appointment

 Fall (Even Years – Geology-lead instructor)

 Anupma Prakash
 Office: WRRB-108E, UAF
 Telephone: 907-4741897
 Email: prakash@gi.alaska.edu
 Office hrs: ad hoc / by appointment

 Donald Atwood
 Office: GI-206, UAF
 Telephone: 907-4747380
 Email: dkatwood@alaska.edu
 Office hrs: ad hoc / by appointment

3. Course readings/materials:

 Course text book: In this class we will follow the following text book (required):

 Title: Physical Principles of Remote Sensing
 Author: W. G. Rees
 Edition: 2 edition (September 24, 2001)
 Publisher: Cambridge University Press;
 ISBN-10: 0521669480

 Besides this required text book, you will have access to all class power point lecture materials, lab instructions, and data sets required for your lab assignments. These will be posted on the class website. You are also encourage to refer to other books, journals and magazines available at the UAF library (see list below).
Recommended introductory books in geospatial sciences:

Recommended journals and magazines:

- International Journal of GIS
- International Journal of Remote Sensing
- Geoinformatics
- Geospatial Solutions
- GIS Development
- GPS World

You are encouraged to make extensive use of UAF’s investment in electronic journals. Familiarize yourself on the use of *Web of Science* and the *Goldmine* database of the Rasmuson library. There is a wealth of relevant literature there.

4. **Course description:**

This course provides students with an introduction to the principles and applications of geospatial science (remote sensing, GIS and GPS). Fundamental concepts include electromagnetic radiations, coordinate systems and projections, basic computer science, reasoning and analytical skills, data formats, map reading and map making, and other topics. Practical exercises including field data collection using GPS, photo-interpretation, and using digital image processing and GIS software packages will reinforce theoretical discussions.

5. **Course Goals and Student Learning Outcomes**

Goal: The goal of this core course, required for the students seeking a degree with emphasis in remote sensing and GIS, is to introduce the students to the fundamental theoretical background and some practical applications of geospatial sciences. The course will prepare the students to take more advanced and specialized courses in remote sensing, GIS, GPS, and digital techniques in data analyses.
Student Learning Outcomes: By the end of the course, students will be able to

- **Understand** the fundamental principles in remote sensing imaging and geospatial data integration and analysis.
- **Search and download** relevant geospatial data required for a certain project/purpose.
- **Visually interpret** in a qualitative way a variety of images (optical, infrared, SAR) taken from airborne and satellite platforms.
- **Collect and import** GPS data using handheld recreational mode GPS units.
- **Project** digital data in different projection systems.
- **Compose** a simple cartographically sound map which integrates GPS data, with other geospatial data (vector data; raster maps and images).
- **Appreciate** how geospatial data can be applied in the real-world for hazard assessment, resource allocation, emergency management, change detection, and policy decision-making.

6. Instructional methods:

- 75 minute lecture followed by 45 minute lab, meeting twice a week.
- Lectures will be interactive and will involve use of power point presentations and group discussions. Material will be posted on the web if possible.
- Laboratory component will include hands-on experience with available image processing software packages.
- Reading assignments from materials provided and recommended readings on selected topics will be an integral part of the course.

7. Course calendar:

See detail class schedule (attached)

8. Course policies:

Attendance in lectures and labs is essential. For some reason, if you can not be present for a lecture or lab, please let us know in advance and make arrangements for make up of the time. Missing one lecture and lab without prior permission from the instructor will result in a loss of 3 points (3% from your final grades).

Due dates for homework assignments and lab assignments are fixed and will be printed on the homework and lab assignment sheets. Late work will be assessed a 10% reduction in score for each day late. After 7 days, late work will be given a score of zero.

Make-up tests or deferral of late penalties will be permitted only with documented proof of illness or for compassionate reasons.

We do expect all students to abide by the UAF Student Code of Conduct (see: http://www.uaf.edu/catalog/current/academics/regs3.html)
9. Grading Policy:
Your grades will be based on several factors as detailed below:

- 15%: Lecture and lab participation (see course policy above)
- 20%: Lab assignments. Most labs require that you complete the lab work in class and show the results to the instructors/TA or submit the answer sheet that accompanies the lab instructions. Make sure that you answer all questions and submit the responses by the indicated deadline (see course policy above).
- 15%: Mid-term. Your mid-term will comprise of short questions/ multiple choice answers that you will complete in class as a ‘closed-book’ exam.
- 30%: Two homework assignments due in late October and late November. Homework assignment will vary from year to year. Students need to answer the questions independently. Grading will be based on the completeness, comprehensiveness, and demonstrated understanding of the fundamental concepts and applications of geospatial sciences. Late work will be penalized as stated in the course policy.
- 20%: Final exam. Will be a combination of multiple choice answers and an essay type answer on the topics covered throughout the semester.

Grading index followed in this class is given below (Numerical GPA equivalence of Grades as per University Regulation R10.04.09 are indicated in parenthesis)

<table>
<thead>
<tr>
<th>Numerical GPA</th>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-100</td>
<td>A+</td>
<td>(4.0)</td>
</tr>
<tr>
<td>92-95</td>
<td>A</td>
<td>(4.0)</td>
</tr>
<tr>
<td>88-91</td>
<td>A-</td>
<td>(3.7)</td>
</tr>
<tr>
<td>84-87</td>
<td>B+</td>
<td>(3.3)</td>
</tr>
<tr>
<td>79-83</td>
<td>B</td>
<td>(3.0)</td>
</tr>
<tr>
<td>75-78</td>
<td>B-</td>
<td>(2.7)</td>
</tr>
<tr>
<td>70-74</td>
<td>C+</td>
<td>(2.3)</td>
</tr>
<tr>
<td>67-69</td>
<td>C</td>
<td>(2.0)</td>
</tr>
<tr>
<td>63-66</td>
<td>C-</td>
<td>(1.7)</td>
</tr>
<tr>
<td>59-62</td>
<td>D+</td>
<td>(1.3)</td>
</tr>
<tr>
<td>55-58</td>
<td>D</td>
<td>(1.0)</td>
</tr>
<tr>
<td>51-54</td>
<td>D-</td>
<td>(0.7)</td>
</tr>
<tr>
<td>50>/=</td>
<td>Fail</td>
<td></td>
</tr>
</tbody>
</table>

10. Learning Support Services:
Besides access to the UAF library that has a wealth of relevant reference material, for this class you will also have access to a computer lab (West Ridge Research Building: WRRB 004) that has relevant software tools, such as Microsoft Excel, ESRI ArcGIS, and Google Earth installed on the computers. UAFs OIT also maintains site license for these software packages that you will have access to if you are using a personal computer system that is on the UAF network.
11. Disabilities Services:

Should you have any special needs, please come and talk to us and we will work with you to accommodate your needs as best as possible. We will work with the UAF Office of Disability Services (208 WHITAKER BLDG, 474-5655) to provide reasonable accommodation to students with disabilities.
<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction to Geospatial Sc (RS and GIS)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Map Interpretation</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Reading Maps</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Google; NASA WW; Alaska Mapped</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Map Projections</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Reprojecting maps (using a global shapefile)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Handheld GPS and Controls</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Geocaching and Measurement of controls</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Waves and EM Spectrum</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Excel Lab with calculations</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Active and Passive Sensors</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Visual study of images from active/passive sensors</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>Platforms (Satellites/Airborne)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Globes/ Balloons</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Perspectives and Scales (Nadir vs Oblique)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Examples of perspectives and scales</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>Aerial Photography and Photogrammetry</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Stereoscopy lab</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Modern Ortho imaging</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Lab with PhotoScan</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>Revision/Discussion</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Mid term exam</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>GIS concepts (raster, vector, database)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>FNSB GIS</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>GIS Analysis</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>GIS Analysis (eg. making an FCC and NDVI)</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>DEM</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>ArcGIS to compute SRM, Slope, Aspect, HillShade</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>Lidar</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Global Mapper: Visualize point-clouds for Fairbanks</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>SAR</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>MapReady</td>
</tr>
<tr>
<td>9</td>
<td>29</td>
<td>Field data collection</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Map GPS points on a map</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Add WMS base to earlier map</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>Spectral Signatures</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Use hypercube to play with RGB</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Landcover Mapping</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Use hypercube to classify Fairbanks (clustering)</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>Change Detection</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>Use Arc GIS for change detection (Amazon)</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>Applications of Change detection</td>
</tr>
<tr>
<td>Week 12</td>
<td>Lecture 23</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Lab 23</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td></td>
<td>Lecture 24</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td></td>
<td>Lab 24</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td>Week 13</td>
<td>Lecture 25</td>
<td>Cadastral Applications</td>
</tr>
<tr>
<td></td>
<td>Lab 25</td>
<td>Cadastral Lab with Arc GIS</td>
</tr>
<tr>
<td></td>
<td>Lecture 26</td>
<td>Public Safety; Emergency Management</td>
</tr>
<tr>
<td></td>
<td>Lab 26</td>
<td>Vehicle routing lab</td>
</tr>
<tr>
<td>Week 14</td>
<td>Lecture 27</td>
<td>Flooding / Landslides</td>
</tr>
<tr>
<td></td>
<td>Lab 27</td>
<td>Inundation Analysis (H&H modeling)</td>
</tr>
<tr>
<td></td>
<td>Lecture 28</td>
<td>Final Exams</td>
</tr>
<tr>
<td></td>
<td>Lab 28</td>
<td>Final Exams</td>
</tr>
</tbody>
</table>