TRIAL COURSE OR NEW COURSE PROPOSAL

SUBMITTED BY:

<table>
<thead>
<tr>
<th>Department</th>
<th>SFOS</th>
<th>College/School</th>
<th>SFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared by</td>
<td>Sarah Hardy</td>
<td>Phone</td>
<td>907-474-7616</td>
</tr>
<tr>
<td>Email Contact</td>
<td>smhardy@alaska.edu; cneumann@alaska.edu</td>
<td>Faculty Contact</td>
<td>Sarah Hardy</td>
</tr>
</tbody>
</table>

1. ACTION DESIRED (CHECK ONE):
 - [] Trial Course
 - [X] New Course

2. COURSE IDENTIFICATION:
 - Dept: MSL
 - Course #: 412
 - No. of Credits: 3

Justify upper/lower division status & number of credits: This course will be stacked with a graduate-level course (MSL.612), and will have different grading criteria than the 600-level version. It is aimed at undergraduate students with a strong background in biology and/or marine science, beyond the level of most lower-division students. The course is comprised of 3 hours of lecture per week.

3. PROPOSED COURSE TITLE:
 - Early life histories of marine invertebrates

4. CROSS LISTED?
 - [] YES
 - [X] NO

 (Requires approval of both departments and deans involved. Add lines at end of form for such signatures.)

5. STACKED?
 - [X] YES
 - [] NO

6. FREQUENCY OF OFFERING:
 - Alternate fall
 - (Every or Alternate) Fall, Spring, Summer – or As Demand Warrants

7. SEMESTER & YEAR OF FIRST OFFERING (if approved)
 - Fall 2011
 - Per Registrar: Fall 2012.

8. COURSE FORMAT:
NOTE: Course hours may not be compressed into fewer than three days per credit. Any course compressed into fewer than six weeks must be approved by the college or school’s curriculum council. Furthermore, any core course compressed to less than six weeks must be approved by the core review committee.

 | COURSE FORMAT: |
 | (check one) |
 | [] 1 |
 | [] 2 |
 | [] 3 |
 | [] 4 |
 | [X] 5 |
 | 6 weeks to full semester |

 OTHER FORMAT (specify)

 Mode of delivery (specify lecture, field trips, labs, etc)

 Lecture

9. CONTACT HOURS PER WEEK:

 LECTURE
 - hours/weeks: 3

 LAB
 - hours/week:

 PRACTICUM
 - hours/week:

Note: # of credits are based on contact hours. 800 minutes of lecture=1 credit. 2400 minutes of lab in a science course=1 credit. 1600 minutes in non-science lab=1 credit. 2400-4800 minutes of practicum=1 credit. 2400-8000 minutes of internship=1 credit. This must match with the syllabus. See http://www.uaf.edu/uargov/faculty/cd/credits.html for more information on number of credits.

OTHER HOURS (specify type)
10. **COMPLETE CATALOG DESCRIPTION including dept., number, title and credits (50 words or less, if possible):**

| MSL 412 Early life histories of marine invertebrates |
| 3 credits Offered Fall |
| This course will explore the diversity of reproductive strategies and larval forms in marine invertebrates, and consider selective pressures governing the evolution of these forms. Topics include: larval ecology and evolution, environmental constraints on early-life histories, reproductive biology, population dynamics, and larval mortality, dispersal and recruitment. |
| Prerequisites: MSL 212 (3+0) |

11. **COURSE CLASSIFICATIONS:** (undergraduate courses only. Use approved criteria found on Page 10 & 17 of the manual. If justification is needed, attach on separate sheet.)

- H = Humanities
- N = Natural Science
- S = Social Sciences

Will this course be used to fulfill a requirement for the baccalaureate core? YES ☑️ NO ☐

IF YES, check which core requirements it could be used to fulfill:

- O = Oral Intensive, Format 6
- W = Writing Intensive, Format 7
- Natural Science, Format 8

12. **COURSE REPEATABILITY:**

Is this course repeatable for credit? YES ☑️ NO ☐

Justification: Indicate why the course can be repeated (for example, the course follows a different theme each time).

How many times may the course be repeated for credit? TIMES ☐

If the course can be repeated with variable credit, what is the maximum number of credit hours that may be earned for this course? CREDITS ☐

13. **GRADING SYSTEM:**

LETTER: X

PASS/FAIL: ☐

14. **RESTRICTIONS ON ENROLLMENT (if any)**

PREREQUISITES

MSL 212, or permission of instructor

RECOMMENDED

BIOL 305 (Invertebrate zoology) or BIOL 450 (Marine Biology and Ecology Field Course)

Classes, etc. that student is strongly encouraged to complete prior to this course.

15. **SPECIAL RESTRICTIONS, CONDITIONS**

none

16. **PROPOSED COURSE FEES**

none

Has a memo been submitted through your dean to the Provost & VCAS for fee approval? Yes/No

17. **PREVIOUS HISTORY**

Has the course been offered as special topics or trial course previously? Yes/No

If yes, give semester, year, course #, etc.: Spring 2010 (MSL 693)

18. **ESTIMATED IMPACT**

WHAT IMPACT, IF ANY, WILL THIS HAVE ON BUDGET, FACILITIES/SPACE, FACULTY, ETC.

None. The course will be taught by an existing faculty member as part of the contractual teaching obligation. No specialized facilities are required for this course.

19. **LIBRARY COLLECTIONS**

Have you contacted the library collection development officer (ffklj@uaf.edu, 474-6695) with regard to the adequacy of library/media collections, equipment, and services available for the proposed course? Yes/No

If so, give date of contact and
resolution. If not, explain why not.

No Yes X

During the period when this course was offered as a “special topics” course, continuous communication was maintained with Anne Christie in the BioSci library. Anne has received a copy of the syllabus and tentative reading list, and it was determined that all reading materials needed are available through the library.

20. IMPACTS ON PROGRAMS/DEPTS
What programs/departments will be affected by this proposed action?
Include information on the Programs/Departments contacted (e.g., email, memo)
The MSL program will be impacted by an increase in the diversity of course offerings available to undergraduate students. This course will also satisfy requirements for the new undergraduate minor in Marine Science that has been proposed concurrently. Topics covered will also be of interest to FISH students, particularly for those interested in aquaculture and shellfish resources.

21. POSITIVE AND NEGATIVE IMPACTS
Please specify positive and negative impacts on other courses, programs and departments resulting from the proposed action.
The MSL program has identified a need for this specialized course to serve their students, and thus a faculty position was created for an instructor with expertise in this field to develop just such a course. The course is therefore expected to closely complement the existing offerings, and address a specific gap within the program. No negative impacts are expected from this course.

JUSTIFICATION FOR ACTION REQUESTED
The purpose of the department and campus-wide curriculum committees is to scrutinize course change and new course applications to make sure that the quality of UAF education is not lowered as a result of the proposed change. Please address this in your response. This section needs to be self-explanatory. Use as much space as needed to fully justify the proposed course.

Understanding the processes that influence survival and movement of larval forms is essential to a wide variety of current issues in marine ecology, particularly in Alaskan waters, including invasive species, climate impacts on species ranges, fisheries resource management, and establishment of marine reserves. This course will give students an in-depth exposure to this important topic, which is currently only briefly dealt with in survey courses. The 400-level students in this course will be subjected to different grading criteria and expectations than the 600-level students in that graduate-level students will be expected to complete additional assignments (oral presentation, mock manuscript review) and take leadership roles in group discussions of the scientific literature.

APPROVALS:

Signature, Chair; Program/Department of: Date 10 Dec 2010

Signature, Chair, College/School Curriculum Council for: Date 13 Dec 2010

Signature, Dean, College/School of: Date

Signature of Provost (if applicable) Offerings above the level of approved programs must be approved in advance by the Provost.
ALL SIGNATURES MUST BE OBTAINED PRIOR TO SUBMISSION TO THE GOVERNANCE OFFICE

Signature, Chair, UAF Faculty Senate Curriculum Review Committee

Date

ADDITIONAL SIGNATURES: (If required)

Signature, Chair,
Program/Department of:

Date

Signature, Chair, College/School Curriculum Council for:

Date

Signature, Dean, College/School of:

Date
ATTACH COMPLETE SYLLABUS (as part of this application).

Note: syllabus must follow the guidelines discussed in the Faculty Senate Guide

The department and campus wide curriculum committees will review the syllabus to
ensure that each of the items listed below are included. If items are missing or
unclear, the proposed course change will be denied.

SYLLABUS CHECKLIST FOR ALL UAF COURSES
During the first week of class, instructors will distribute a course
syllabus. Although modifications may be made throughout the semester, this
document will contain the following information (as applicable to the
discipline):

1. Course information:
 □ Title, □ number, □ credits, □ prerequisites, □ location, □ meeting time
 (make sure that contact hours are in line with credits).

2. Instructor (and if applicable, Teaching Assistant) information:
 □ Name, □ office location, □ office hours, □ telephone, □ email address.

3. Course readings/materials:
 □ Course textbook title, □ author, □ edition/publisher.
 □ Supplementary readings (indicate whether □ required or □ recommended) and
 □ any supplies required.

4. Course description:
 □ Content of the course and how it fits into the broader curriculum;
 □ Expected proficiencies required to undertake the course, if applicable.
 □ Inclusion of catalog description is strongly recommended, and
 □ Description in syllabus must be consistent with catalog course
description.

5. □ Course Goals (general) and □ Student Learning Outcomes (more specific)

6. Instructional methods:
 □ Describe the teaching techniques (eg: lecture, case study, small group
discussion, private instruction, studio instruction, values clarification,
games, journal writing, use of Blackboard, audio/video conferencing, etc.).

7. Course calendar:
 □ A schedule of class topics and assignments must be included. Be specific
 so that it is clear that the instructor has thought this through and will
 not be making it up on the fly (e.g. it is not adequate to say “lab”.
 Instead, give each lab a title that describes its content). You may call
 the outline Tentative or Work in Progress to allow for modifications during
 the semester.

8. Course policies:
 □ Specify course rules, including your policies on attendance, tardiness,
class participation, make-up exams, and plagiarism/academic integrity.

9. Evaluation:
 □ Specify how students will be evaluated, □ what factors will be
 included, □ their relative value, and
 □ how they will be tabulated into grades (on a curve, absolute scores,
 etc.)

10. Support Services:
 □ Describe the student support services such as tutoring (local and/or
regional) appropriate for the course.

11. Disabilities Services:
 The Office of Disability Services implements the Americans with
Disabilities Act (ADA), and insures that UAF students have equal access to
the campus and course materials.
State that you will work with the Office of Disabilities Services (203 WHIT, 474-7043) to provide reasonable accommodation to students with disabilities."
MSL 412: Early Life Histories of Marine Invertebrates (3 credits)

Instructor: Dr. Sarah M. Hardy
School of Fisheries and Ocean Sciences
233 Irving II
907-474-7616
smhardy@alaska.edu

Class meeting times: T/Th 3:30 – 5:10
Location: TBA
Office hours: T/Th 1:00 – 3:00

Prerequisites: MSL 212, or permission of instructor.

Course Description
This course will explore the diversity of reproductive strategies and larval forms in marine invertebrates, and consider selective pressures governing the evolution of these forms. Topics include: larval ecology and evolution, environmental constraints on early life-histories, reproductive biology, population dynamics, and larval mortality, dispersal and recruitment.

Course Goals: In this course, advanced students in marine science will gain an in-depth look at the reproductive biology of marine invertebrates. We will explore invertebrate reproduction, from the production of eggs and sperm to the successful transformation into the juvenile form, and all steps in between. Throughout this course we will consider environmental constraints on reproduction and larval ecology, and their effects on the evolution of early life-history strategies in the marine environment. The production, movement, and survival of larval forms is a central theme in many current issues in marine ecology, including invasive species, establishment of marine reserves, and impacts of climate change on marine communities. This course thus aims to provide students with a solid understanding of reproductive ecology, and an opportunity to critically examine current research in the field. The course will be structured in a lecture format, but will include regular group discussions of the primary literature.

Learning Objectives
1. Identify common invertebrate larval forms, become familiar with the classification schemes used to describe larvae, and understand the role of larval forms in defining invertebrate taxonomic relationships.
2. Become familiar with the basic biological processes of gamete production, fertilization, embryogenesis, and larval development in marine invertebrates.
3. Examine the influence of environmental variables on larval development, dispersal and recruitment, and consider the potential effects of these variables on the evolution of marine life-history strategies.
4. Critically evaluate and discuss current research topics in which marine life-history strategies play an important role.
5. Explore current research methods relevant to life-history studies.

Instructional Methods and Course Policies
Instruction will consist primarily of lectures, but frequent group discussion of the scientific literature will also be an important aspect of the course (see below). Class participation and
active engagement in these discussions is expected from ALL students. Key ideas presented in

group discussions can also be expected to appear on exams. Points for class participation will

be applied toward the final grade, as indicated below. Excessive tardiness and/or absence are

unacceptable. This is an advanced course, and students are expected to conduct themselves as

young professionals. More than two unexplained incidents of tardiness or absence will result in

a deduction of points from the participation grade.

Check your email regularly, and be sure I have your current contact information throughout the

semester. Also, make sure you have a valid login for Blackboard. Class information, lecture

notes, schedule updates, and readings will be made available via Blackboard. We will also be

using Blackboard to facilitate discussions of some of the readings.

Two midterms and one final exam will be given during the course. These exams will be written,

closed-book, short-answer and/or essay exams, and must be completed during the normal class

period. The final exam will include material presented throughout the semester, but will be

weighted toward material covered after the second midterm. In the case of work-related

student travel, illness, or other emergency, make-up exams can be arranged. However,

students are required to notify the instructor of their planned absence via email or voicemail

prior to the class period in which the exam is scheduled.

Group Discussions

Plan on discussing as many as three readings from the primary scientific literature each week.

Readings will be selected by the instructor, unless otherwise noted, and will be distributed via

email a week in advance. All students will be expected to participate in discussions. In many

cases, students may be asked to post a comment or question on a Blackboard discussion group

that is related to the reading. These posts are to be written prior to the class for which the

reading is assigned. Postings will be used to stimulate additional in-class verbal discussions.

This process is very important in developing a command of the scientific literature and

identifying factors that will make our own writing interesting, effective, and publishable—

PLEASE BE PREPARED. When preparing for these sessions, ask yourself the following questions,

which we will use as a guide for our discussion:

• Why was this reading assigned? What is the relevance to the lecture topic?

• What is the purpose of the paper? Is the purpose clearly stated? Justified?

• Question/Objective/Hypotheses: Is the question or hypothesis well-stated? Is it relevant to

the stated purpose?

• Methods: Are the methods sound? Are they appropriate to the hypothesis stated? What

would you do differently? What assumptions are inherent in the methods? Are these

assumptions reasonable/acceptable/justified?

• Results: What are the key results? Do they address the stated hypothesis? Was the hypothesis

accepted/rejected? Do the figures present the results clearly? Identify figures that are
especially useful in conveying the important findings—what do you like about them? What do they tell you?

• Discussion: Do the conclusions follow from the results? Are they presented in a broader context of other work done in the field? Are there broader implications for the field of marine science/biology/fisheries? Are the results relevant in any way to your own work? Are there any major questions suggested by the findings? What would you propose as ‘the next step’ for this line of research?

• General editorial critique: Was the paper easy to follow? Why or why not? Was there information missing that would have helped clarify any aspect of the study? Did each section of the paper contain the appropriate material? Were the figures clear, useful, and easy to interpret?

Readings
No textbook is required for this course; readings will be assigned from the primary literature. All readings will be posted on Blackboard. In addition to required discussion readings, the instructor will provide a general review paper or book chapter for each topic wherever possible. These review papers are listed on the lecture schedule below. A master reading list organized by topic will also be posted on Blackboard and updated periodically throughout the semester. This list will contain citations for all references provided to you, as well as those cited in lectures and any additional papers of potential interest. If you have trouble obtaining any of these references from the library, ask the instructor for assistance.

PLEASE NOTE: As advanced students in the natural sciences, a command of the current literature in your field is essential, as is an ability to allocate your time in the most effective manner. I will thus expect you to take responsibility for deciding how and where to spend your time on readings. Here are a few guidelines:

• Readings from the published scientific literature will be discussed in class, as described above. In preparing exam questions, I WILL assume you are familiar with the general concepts and ideas presented in these readings. I WILL NOT expect you to recall detailed information about, e.g., specific figures, etc.
• Review papers may be used in lieu of a text book. How you use them is up to you. If you feel you need a source of additional background reading on lecture topics, skim the reviews for relevant points. If not, consider them an addition to your personal library.
• I will present results and ideas from the relevant scientific literature in lectures, and will provide citations on the slides wherever appropriate. If I mentioned it in class, that probably means I think it is important, so refer to the master reading list if you missed something or want to take a closer look at an original source mentioned in lecture.

Several useful (but not required) texts are listed below. These books will be placed on physical reserve at the UAF BioSci Library for the entire semester. A good invertebrate zoology text (e.g., Brusca & Brusca) is recommended and should be in the library of all marine biology students; if you do not already own one, you may want to consider a purchase (used copies can often be found for low prices):

[Particularly useful chapters include Ch. 4 on reproduction and larval forms.]
[A collection of review papers that summarize many of the topics we will cover in this course.
Although these papers are several years old, they are still useful as reviews of the “classic” literature.]
[A developmental biology text with more detailed information on early embryology, including gene
expression, cell communication, and other topics of potential interest.]
Diego, 626 pp. [A beautiful illustrated atlas of larval forms organized by phyla, with good general
information about the life-cycle of each group.]

Plagiarism and academic integrity: Plagiarism will not be tolerated in any way during this
course. All assignments are expected to consist of students’ original ideas and/or information
from properly cited published sources. Students may seek assistance with proper referencing of
scientific literature from the instructor as needed. Students are expected to conduct
themselves according to the UAF Student Code of Conduct, which can be found in the course
catalog. Failure to comply with these guidelines will result in a failing grade, and the student
may face consequences at the university level, depending on the severity of the offense.

Grading
Grades will be determined based on the absolute points awarded for the following
requirements:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Possible points</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation (attendance, preparedness, discussions)</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>Discussion board postings</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Final exam</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>500 pts.</td>
<td>100%</td>
</tr>
</tbody>
</table>

Semester grades will be assigned according to the following scale:

- A+ 98-100%
- A 93-97%
- A- 90-92%
- B+ 87-89%
- B 83-86%
- B- 80-82%
- C+ 77-79%
- C 73-76%
- C- 70-72%
- D+ 67-69%
- D 63-66%
- D- 60-62%
- F <60%

Support and Disability Services
The Office of Disability Services (203 WHIT; 474-5655; fydsu@uaf.edu) implements the
Americans with Disabilities Act and insures that UAF students have equal access to the campus
and course materials. Students with physical or learning disabilities should contact this office,
or the instructor, as soon as possible so that suitable arrangements can be made to
accommodate specialized needs.
Lecture Schedule (**Subject to change**):

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Topic</th>
<th>Assignments/Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/2</td>
<td>Introductions, Course overview and goals</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/7</td>
<td>Invertebrate zoology review; Classification of life-history modes</td>
<td>Brusca & Brusca Ch. 4; McEdward Ch. 1</td>
</tr>
<tr>
<td></td>
<td>9/9</td>
<td>Embryology review; Generalized larval forms</td>
<td>Nielsen 1998</td>
</tr>
<tr>
<td>3</td>
<td>9/14</td>
<td>Origin of complex life cycles: Why are there larvae?</td>
<td>McEdward Ch. 13</td>
</tr>
<tr>
<td></td>
<td>9/16</td>
<td>Diversity of life-history modes</td>
<td>Young et al. 2002 text as needed</td>
</tr>
<tr>
<td>4</td>
<td>9/21</td>
<td>Diversity of life-history modes (cont.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/23</td>
<td>Diversity of life-history modes (cont.)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9/28</td>
<td>Guest lecture (Katrin Iken): Reproduction in macroalgae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/30</td>
<td>Evolutionary transitions in life-history modes</td>
<td>McEdward Ch. 3</td>
</tr>
<tr>
<td>6</td>
<td>10/5</td>
<td>Midterm #1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10/7</td>
<td>Evolution of brooding</td>
<td>Strathmann & Strathmann 1982</td>
</tr>
<tr>
<td>7</td>
<td>10/12</td>
<td>Egg size models</td>
<td>McEdward Ch. 2</td>
</tr>
<tr>
<td></td>
<td>10/14</td>
<td>Larval mortality and selective pressures</td>
<td>Strathmann 2007</td>
</tr>
<tr>
<td>8</td>
<td>10/19</td>
<td>Fertilization; gamete competition; sexual selection</td>
<td>Levitan 1998; Yund 2000</td>
</tr>
<tr>
<td></td>
<td>10/21</td>
<td>Special topics: Reproduction in the deep-sea</td>
<td>Young 2004</td>
</tr>
<tr>
<td>9</td>
<td>10/26</td>
<td>Maternal investment; Gametogenesis and spawning</td>
<td>McEdward Ch. 5; Marshall et al. 2008</td>
</tr>
<tr>
<td></td>
<td>10/28</td>
<td>Larval diet and nutrition</td>
<td>McEdward Ch. 7</td>
</tr>
<tr>
<td>10</td>
<td>11/2</td>
<td>Latent effects of larval experience</td>
<td>Pechenik 2006</td>
</tr>
<tr>
<td></td>
<td>11/4</td>
<td>Larval swimming and feeding; Boundary layer processes</td>
<td>Metaxas 2001</td>
</tr>
<tr>
<td>11</td>
<td>11/9</td>
<td>Midterm #2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/11</td>
<td>Special topics: Ocean acidification effects on larvae</td>
<td>Dupont & Thorndyke 2009</td>
</tr>
<tr>
<td>12</td>
<td>11/16</td>
<td>Larval dispersal: Physical processes and population connectivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/18</td>
<td>Larval dispersal, range size, and population effects</td>
<td>Shanks 2009</td>
</tr>
<tr>
<td>13</td>
<td>11/23</td>
<td>Guest lecture (Georgina Gibson): Dispersal modeling</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11/30</td>
<td>Recruitment and population dynamics</td>
<td>Menge 2000</td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>12/2</td>
<td>Special topics: Marine protected area design principles</td>
<td>Gaines et al. 2007</td>
<td></td>
</tr>
<tr>
<td>12/7</td>
<td>Graduate student presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/9</td>
<td>Graduate student presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Final exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curriculum Committee SFOS

Members: Trent Sutton (Chair)
 Katrin Iken
 Jeremy Mathis
 Andre Lopez

08 December 2010

New Course
Course Number: MSL 412
Course Title: Early Life Histories of Marine Invertebrates
Instructor: Hardy
First Time of Offering: No

General Recommendations:

On the last page of the course proposal form is a checklist of components to be included in the syllabus. Be sure to go through this checklist to make sure all components are addressed. Failure to do so could result in the delay of getting this course proposal through the UAF Curriculum Review Committee.

Faculty Senate Form:

Clarify and Address the following:
- For course identification, need to include a statement that this is a stacked course and that there will be different grading criteria for undergraduate and graduate students.
- The catalog description (section 10) must appear as it will in the actual catalog; you must include the prerequisites and course format (e.g., 3+0); you only had the title, credits, and course description. No hyphen between life and histories. Your course description must match the syllabus.
- Not a natural science course so do not check that box.
- For prerequisites, just MSL 212 or permission of instructor (MSL 211 is implied as is a prereq for MSL 212).
- The UAF Curriculum Review Committee is recommending that recommended courses should not be listed.
- State “None” for special restrictions.
- In your justification, must state how the 400-level and 600-level versions of this course differ.

Syllabus:
- Office hours have to be provided and posted, cannot be just by appointment.
- The course description on the syllabus must match the course description on the form (UAF requirement).
- For the plagiarism. Last line, change to reflect that plagiarism will result in an F grade, zero for the assignment, or failing the class, etc.