Syllabus for GEOS 458 / 658 – Geoscience applications of GPS and GIS

1. Course information:
 Title: Geoscience applications of GPS and GIS
 Number: GEOS 458 / GEOS 658
 Credits: 3
 Prerequisites: GEOS 225 or permission of instructor
 Location: Lectures in Reichardt Building; Room 233
 Labs in Reichardt Building; Room 316
 Term: Every Spring
 Meeting time: Lectures: Wednesday and Friday, 1.00pm to 2.00pm
 Lab: Wednesday, 2.15pm to 5.15pm

2. Instructor Information:
 Name: Instructor 1: Anupma Prakash (Odd Spring)
 Instructor 2: William Witte (Even Spring)

 Anupma Prakash
 Office: Room 108E, WRRB, UAF
 Telephone: 907-4741897
 Email: prakash@gi.alaska.edu
 Office hours: ad hoc / by appointment

 (Email is the best way to reach me. If it is urgent and it is during the evening hours or
 weekend you can also reach me at my home telephone number: 4554159)

 William Witte
 Office: Room 308, Reichardt Building, UAF
 Telephone: 907-4747809
 Email: fnwkw@uaf.edu
 Office hours: ad hoc / by appointment

3. Course readings/materials:
 No specific text book is required for this course. The instructors will be providing
 reading material and detailed lab instructions that will be posted on the class web site.

 Recommended supplementary readings:
 Books
 • GIS Concepts and ArcGIS Methods by David M. Theobald
 • Getting Started with ArcGIS: ArcGIS 9
 • Getting to Know ArcGIS Desktop by Ormsby T. et al.
 • Geographical Information Systems – Principles, Techniques, Applications and
 Management by Longley et al.
 • Principles of Geographical Information Systems by Burrough and McDonnell
Journals and Magazines

- International Journal of GIS
- Geoinformatics
- Geospatial Solutions
- GIS Development
- GPS World

4. Course description:

This course explores advanced digital techniques used in geoscience analysis and research. The students learn the principles and techniques of Global Positioning Systems (GPS) and Geographic Information Systems (GIS). Students will determine locations of geological/geophysical/geochemical observations using static and differential GPS techniques and apply real-time and post-processing GPS corrections. Through hands-on data acquisition they will determine limits of GPS data accuracy. Students will collect data into geodatabases, merge data from different sources, and analyze spatial relationships using GIS tools. Using real-world examples, students will re-project and rectify spatial data collected in different map projections and datums. Course will emphasize integration of ground-based observations, remote sensing data, and legacy maps. Students will carry out an independent project which will include generating digital and printed maps.

5. Course Goals and Student Learning Outcomes

Goal: The goal of this course is to take the students beyond what they have learned in a basic course in field and computer methods in geology (GEOS 225), with special focus on the principles, techniques, and real-world applications of GPS and GIS.

Student Learning Outcomes: By the end of the course, students will be able to
- Use simple and advanced GPS receivers
- Process differential GPS data
- Integrate GPS data into a GIS
- Incorporate simple tabular data into GIS using MS Excel as an intermediate tool
- Search, download and integrate data available from many sources into a GIS database.
- Scan and georeference large format legacy maps and old aerial photos
- Reproject and rectify spatial data collected from in different map projections and datums
- Perform simple spatial analysis operations on tabular, vector and raster data sets.
- Integrate raster data with vector data to generate final map products.
- Generate readable maps controlling annotation and labeling
- Apply the acquired theoretical and practical knowledge to complete an independent term project on a topic of their choice.
6. Instructional methods:
- 1 hour lecture meeting twice a week. Lectures will be interactive and will involve use of power point presentations, blackboard, and group discussions. Material will be posted on the web.
- 3 hour laboratory component once a week will include hands-on experience with a variety of digital data, GPS equipment, and geospatial software packages.
- Reading assignments from materials provided and recommended readings on selected topics will be an integral part of the course.
- Independent project work

7. Course calendar: See attached schedule

8. Course policies:
 Attendance in lectures and labs is essential. For some reason, if the course participant can not be present for a lecture or lab, they should inform the instructor in advance and make arrangements for make up of the time. Each student is expected to abide by the UAF Student Code of Conduct (visit: http://www.uaf.edu/catalog/current/academics/regs3.html)

9. Grading Policy:
 Three graded homework assignments: 30%
 Independent Project (including final presentation): 40%
 Lecture and lab participation and completion: 30%

10. Independent Project:
 Each student is required to carry out an independent term project. The project must use raster, vector, and tabular data. Students are encouraged to work on a topic that helps extend their ongoing thesis research or professional work in industry. They are also encouraged to discuss their project early on with the instructor and turn in a 1-2 page project proposal for approval by the indicated day. Students should be aware that the independent term project is time demanding. Though some time will be available during the scheduled lab hours, these hours will be insufficient to complete the project, and students should be prepared to put in extra work hours. Judiciously selected projects with diligent effort from the very start may yield results suitable for subsequent publication in either conference proceedings or peer-reviewed journals. Students should keep this in mind as they develop and carry out their projects.

11. Disabilities Services:
 The instructor will work with the Office of Disabilities Services to provide reasonable accommodation to students with disabilities.