The Committee for Noxious and Invasive Plant Management (CNIPM)
Alaska Invasive Species Working Group (AISWG)
2010 Poster Abstracts
October 26th-28th, Fairbanks, AK

Abstracts by first author’s last name:

Balk, Christine1 ... 1
Bowser, Matthew L. .. 2
Colton, Rusica-lea .. 3
Etcheverry, Darcy D. ... 4
Grant III, Thomas A. .. 5
Gronquist, Ruth1 .. 6
Heidemann, Marie E.1 ... 7
Hovland, Tessa R. .. 9
Lain, Annie ... 10
Maher, Kimberley ... 11
Larsen, Amy1 .. 12
Million, Bonnie ... 13
Moretti, A ... 14
Norlen, C.1 .. 15
Pampell, R.1 .. 16
Persselin, Sara ... 17
Spellman, Katie V. ... 18
Villano, Christine P.1,2 .. 19
White, Dana .. 20
Winter, Genelle ... 21
Winter, Genelle ... 22
The ultimate goal of the Native Plant Materials Development Program is to ensure sufficient native plant materials are available in the commercial market for maintaining the natural landscape. Long-term objectives include developing guidelines for seed transfer zones for “workhorse” species. Near term goals include increase of the diversity and the amount of native seed available for stabilization, rehabilitation and restoration efforts on public lands. In partnership with the Chicago Botanic Garden and the Alaska Natural Heritage Program, in 2010 the BLM Alaska State Office hired 4 interns and a professional botanist to collect seed throughout the state. Approximately 250 collections were made in such diverse locales as the Seward Peninsula, Copper Basin, Kenai Peninsula, interior highlands near Fairbanks, and the Anchorage area.
Exotic Earthworms in Alaska: an Insidious Threat

Bowser, Matthew L.

US Fish & Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, Matt_Bowser@fws.gov

As with much of northern North America, most of Alaska is naturally devoid of earthworms due to extensive glaciations over the last 100,000 years. All of the earthworms commonly encountered in Alaska are recent introductions from Europe. A checklist of the 16 earthworm species known from Alaska (1 native, 13 established exotics, and 2 exotics collected from artificial situations) and distribution records are provided.

Introduced earthworms have the potential to dramatically alter natural systems by rapidly consuming the upper organic soil layers. In the Upper Midwest, European earthworms have removed litter and duff from the forest floor at rates of up to 10 cm/yr, causing direct harm to native biota dependent on a thick organic layer. Declines of native plants, ovenbirds, red-backed voles, shrews, and salamanders have been attributed to the activities of earthworms. A more insidious threat is the prospect of invasional meltdown, where exotic species interact positively. In this case, earthworms alter soil properties in a way that is likely to favor exotic plants.

Little can be done to control earthworms once they have become established. However, earthworms have limited dispersal ability; almost all long-range dispersal of earthworms is human-caused.

Recommendations

- The public should be educated about earthworms as potentially harmful exotic species.
- Infested soil, compost, worm castings, and plantings should not be sold or transported.
- Fishing regulations should explicitly and clearly disallow the use of live earthworms as bait.
- Tires of forestry equipment, trucks, and ATV’s should be cleaned to prevent the spread of eggs and cocoons trapped in soil between tire treads.
Invasive Weed Identification and Eradication Project at Nikiski Middle-High School

Colton, Rusica-lea

Nikiski High School

Two Environmental science classes at Nikiski Middle High School were learning about invasive plants on school property and specifically targeting orange hawkweed. Research was conducted on what types of invasive plant species are present in Alaska, how to identify them and which ones are present on campus.

The two class groups surveyed the campus and established a plot where they wanted to eradicate the orange hawkweed. After identifying a patch of orange hawkweed, we did a GPS survey mapping project and filled out an Alaska Exotic Plant Information Clearing House (AKEPIC) field data sheet for the infested area, and also surveyed several non-infested on one-tenth acre plots. The data was submitted to the AKEPIC database. After surveying and learning about control options we went into action pulling and digging as much of the orange hawkweed that we could, and then weighed the weeds. In the spring, the plots will be monitored and compared to the data from the fall of 2010. This work was done in cooperation with the Kenai Invasive Plant Coordinator for the AACD, Janice Chumley. We hope to continue to monitor our school grounds and keep them free of invasive plants.
The Fairbanks CWMA was formed in 2005. Since then the organization has worked to coordinate invasive plant control and education in the Fairbanks North Star Borough and outlying areas. As with other CWMAs, our main goals are to educate the public about the threat of invasive plants, inventory invasive plant infestations, and organize control efforts throughout the community. During the 2010 field season the Fairbanks CWMA followed our mission by conducting inventories, participating in control efforts, and providing education to various groups. Fairbanks CWMA members found three new invasive plant infestations – ornamental jewelweed (Impatiens glandulifera), common tansy (Tanacetum vulgare), and common waterweed (Elodea canadensis). Members organized and participated in the first annual Weed Smackdown, which was a competitive weed pull held at the Tanana Lakes Recreation Area. This event attracted numerous community members and resulted in over 3,400 lbs of invasive plants removed from the Borough park. Our members also attended many community events, such as hosting booths at the Tanana Valley Farmers Market, Northern Living Home Show, and the Tanana Valley State Fair. Our plans for next year include continuation of the Weed Smackdown and hiring a youth crew to perform EDRR on private lands. The Fairbanks CWMA will continue to provide quality invasive plant information and control to our community for the 2011 season!
Can inoculation with soil from intact native plant communities suppress invasive knapweeds?

Grant III, Thomas A.
Paschke, Mark W.

Graduate Degree Program in Ecology and the Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, metag3@gmail.com

The interactions and feedbacks between plants and soil can influence vegetation succession, species diversity, and the effects of pathogens. To improve the restoration of areas invaded by exotic knapweeds, we used greenhouse and field experiments to study the consequences of inoculation with the soil microbial community of native vegetation. We hypothesized that inoculation with native soil microorganisms would benefit the native species and be detrimental to invasive knapweeds. The treatment attempted to manipulate the soil microbes and biogeochemistry through the addition of soil from native vegetation or a sterilized control and was applied in conjunction with native plant seed. The knapweed species responded divergently to the addition of the native soil microorganisms. Russian knapweed significantly increased root biomass under the native soil inoculation, while spotted knapweed had decreased cover and floral density. These different responses may be linked to the reproductive and distributional strategies of the two species. Spotted knapweed is a short-lived perennial that reproduces by seed, while Russian knapweed forms long-lived colonies that spread predominantly by rhizomes. The positive response of Russian knapweed to the native soil inoculation may represent a method for the rhizomatous species to escape its own pathogen accumulation through the spread into adjacent native vegetation. The spatial flexibility of spotted knapweed’s seed based distribution could reduce the importance of avoiding pathogen accumulation in existing patches and the species’ negative response to the native soil inoculation may represent a low impact method to suppress spotted knapweed during restoration. Current research is quantifying the soil biogeochemistry and microbial community diversity to determine the biological and biogeochemical effects of inoculation.
Much activity took place during the later portion of 2009 and during the summer season of 2010 throughout the area that BLM AK manages. Some of the more focused areas for invasive work continue to include the Anchorage Campbell Tract Facility and the Dalton Highway. BLM is in the process of completing NEPA documents for the Dalton Highway corridor that will include the implementation of a more complete integrated weed management approach. Other areas of attention during this period included the Iditarod Trail, Unalakleet River and Salmon Lakes area on the Seward Peninsula. ARRA/stimulus funding provided increased overall accomplishments during the fiscal year.
UAF Campus Invasive Plant Management Plan Development Process and Key Recommendations

Heidemann, Marie E.¹
Todd, Susan¹
Wurtz, Tricia²
Seefeldt, Steven³

¹UAF School of Natural Resources and Agricultural Services
²US Forest Service Forest Health Protection
³USDA-Agricultural Research Service

The UAF Campus Invasive Plant Management Plan was developed through a task-force process with 13 representative members of campus. I facilitated the formal process by which the recommendations were formed and agreed upon. An initial scoping process included interviews with task force members and other interested individuals to identify issues that the plan should address. Task force members attended meetings from February through May 2010 to discuss these issues and make recommendations for invasive plant management on the UAF Campus. A public meeting was held on April 28, 2010 to present a draft of the plan and gather public input. I wrote the final draft of the plan, based on the agreements the task force developed in their meetings. The final plan is currently being considered for acceptance as an addendum to the Campus Landscape Plan.

A focus on best management practices, education and awareness, and management of existing infestations are the primary goals of the plan. Additional recommendations include campus zone priorities, hiring an invasive plant management coordinator, and forming an invasive plant management steering committee. The UAF Campus Invasive Plant Management Plan provides campus land managers with clear guidelines and management priorities to reduce current invasive plant infestations and prevent the establishment of new invasive plants.
Determining Invasion and Dispersal Pathways for Reed Canarygrass (*Phalaris arundinacea* L.) in Anchorage, Alaska

Hovland, Tessa R.

U.S. Fish & Wildlife Service & Alaska Pacific University, thovland@alaskapacific.edu

Reed canarygrass (RCG) is a notorious global weed that is highly invasive and present in Alaska. RCG can cause adverse effects on salmon habitat and threaten local species biodiversity. RCG is present in Anchorage, but the extent of its occurrence is unknown. My research hypothesis is that RCG is spread via human interactions at road-stream crossings, with streams providing a vector for seed dispersal. My null hypothesis is that RCG has no detectable dispersal and invasion pattern and RCG establishment is opportunistic. The objectives of this study are to 1) Map RCG locations, 2) Determine factors that may be contributing to the establishment of RCG, 3) Conduct risk analysis to identify high-priority sites for management activities, 4) Develop a list of control recommendations, and 5) Contribute data to AKEPIC. In order to determine whether or not an invasion and dispersal pattern exists, the presence, infestation size, and density of RCG along major road-stream intersections were mapped using a Trimble GPS unit. These variables were also collected for the length of three of Anchorage’s anadromous streams (Campbell Creek, Chester Creek, and Ship Creek). This study is currently in progress and data analysis has not yet been conducted. Spatial analysis will be used to assign values to features that could contribute to the spread or establishment of RCG (e.g. size of infestation, proximity to stream, vegetation type, level of disturbance). An overlay of the features will determine a cumulative risk value. Areas with the highest cumulative values will be identified as high priority and recommended as areas where management efforts should be focused.
Challenges and Solutions: Weed Disposal in Alaska

Lain, Annie
Million, Bonnie

Alaska Exotic Plant Management Team, NPS, Anne_Lain@nps.gov

The Exotic Plant Management Team faces a variety of challenges in the disposal of invasive weeds. An informal survey was taken to determine the current practices within the Alaska National Park Systems via email. In addition to the survey, resources were pulled to compile a list of possible solutions. Three of the parks surveyed participate in open-burning, a legal but unsupported option by the Alaska Department of Environmental Conservation (ADEC). Three of the parks surveyed dispose of bags in landfills outside of the park, which could establish infestations in new areas and create issues for other land owners. Two of the parks surveyed dispose of bags in high temperature incinerators, an option supported by ADEC and the option most likely to prevent contamination to both air and land. Options researched include open-burning, burn cages, burn barrels, and incinerators. This poster is not intended to be all inclusive, and may not be sufficient to produce complete certainty. The purpose of presenting this poster is to create an open inter-agency discussion on the proper disposal of invasive weeds.
Little is known about invasive plant occurrence and abundance within the Yukon Flats Refuge. Because of the expansive size of the Yukon Flats NWR, it is necessary to create priorities for non-native plant surveys. Yukon Flats refuge staff are especially concerned about white sweet clover populations establishing along the Yukon River and its potential impact on willow shrub communities. Since human traffic and disturbances are often sources for non-native plant populations, non-native plant surveys were conducted in three Yukon River villages to assess the potential spread of seed downstream onto Refuge lands. With permission from local Village Tribal Councils to conduct non-native plant surveys on their lands, the Yukon Flats NWR partnered with the Yukon Flats School District, the Council of Athabaskan Tribal Governments, and the University of Alaska Fairbanks Interior Aleutians Campus to host its first Youth Conservation Corp program. This program employed local high school students from the Yukon Flats region to assist Yukon Flats refuge staff with non-native plant surveys in three communities. An integral goal of the project was to give students the opportunity to develop job skills, learn about their local environment, and earn college credit. Roads and trails within Fort Yukon, Circle, and Beaver were surveyed using a spatially-balanced sampling design. Additionally, non-random sites were surveyed including points of entry, and high traffic and high disturbance areas. Survey results demonstrated that most plants encountered on plots were common non-native species such as *Achillea millefolium*, *Plantago major*, *Bromus inermis*, and *Lappula squarrosa*. *Vicia cracca* was not found amongst our plots, but *Linaria vulgaris* and *Melilotus alba* were found in both Fort Yukon and Circle but at low frequency. These results will help Yukon Flats NWR staff focus future early detection surveys directly downstream of both Circle and Fort Yukon.
Elodea canadensis: an Expected Visitor to Alaska

Larsen, Amy\(^1\)
Lisuzzo, Nicholas\(^2\)
Wurtz, Trish\(^2\)

\(^1\)National Park Service-Alaska Region
\(^2\)US Forest Service-State and Private Forestry

A recent survey of aquatic plants in Chena Slough and the Chena River uncovered a series of large populations of waterweed (*Elodea canadensis*) growing in slow flowing regions of these two important river corridors. *Elodea* is a submerged aquatic plant naturally found in slow flowing waters in the continental US and British Columbia. Although *Elodea canadensis* naturally occurs throughout much of North America, its native range does not include Alaska or the Yukon Territory.

In Europe and Australia it has been labeled an invasive species and caused major economic damage as an aquatic weed or “pest”. It has the ability to completely obstruct and fill a stream channel or lake in as few as 3 to 5 years after its introduction, survive frozen in ice, and spread downstream and into other wetlands during ice flows and flood events. It has demonstrated this ability within interior Alaska by filling in large sections of Chena Slough within the last half decade. The current infestation could spread to streams, ponds lakes and fens downstream of the Chena River, including the Tanana Flats and the Yukon-Kuskokwim Flats. It was recently placed on the state of Alaska’s watch list for invasive aquatic species and is featured in the recently released book “Introduction to Common Native and Potential Invasive Freshwater Plants in Alaska”.

12
What Have We Found? The Alaska Exotic Plant Management Team 2003 thru 2010

Million, Bonnie

National Park Service, Alaska Regional Office, Alaska Exotic Plant Management Team

Since its formation in 2003, the Alaska Exotic Plant Management Team (EPMT) has been mapping and treating invasive plant infestations in and around National Park Service (NPS) units. Within the vast landscapes of Alaska’s 16 NPS units, over 8,700 acres have been inventoried and mapped for invasive weeds. Over 1/3 of this acreage supports at least one non-native species. Levels of infestation among park units are highly variable. The program had a very busy and productive 2010 field season. With funding from two American Recovery and Reinvestment Act projects the Alaska EPMT has inventoried/monitored over 2,540 acres and treated over 62 acres during the over 24,845 person hours spent in the field. No non-native species have been observed within the boundaries of Bering Land Bridge or Cape Krusenstern. By contrast, Sitka and Wrangell-St. Elias each have at least one non-native species infesting over 2/3 of the inventoried land area. The three parks on the road system (Kenai Fjords, Denali, and Wrangell-St. Elias) and the three parks in Southeast Alaska (Glacier Bay, Klondike-Gold Rush, and Sitka) have more non-native species and greater distributions than the ten less visited parks. The 2010 season saw an increase in work in two additional parks, Katmai and Yukon-Charley, due to increased visitation and future construction projects. Future Alaska EPMT invasive weed management efforts will be focused on these eight parks.
Unwelcome Guests: Aliens and Invaders

Moretti, A.
Stuart, L.
Federer, R.
Ferren, H.

Alaska SeaLife Center, 301 Railway Ave, PO Box 1329, Seward, Alaska 99664

Marine invasive species pose a demonstrable and significant risk to Alaska, both ecologically and economically. Through education, early detection, and prevention, Alaska is still in a position to avoid or minimize some of the impacts associated with species invasion that other states and regions have already experienced. With this goal in mind, we have worked in collaboration with the Prince William Sound Regional Citizen Advisory Council to create a new marine invasive species program that targeted secondary grade classrooms studying ecosystems. This program is an interactive course that discusses what it means to be a native, alien, or an invasive species in the marine ecosystem, and encourages students to discuss impacts of marine invasive species on local ecosystems, to develop their own invasive species, and discuss solutions for management. The new program is designed to be 55-minutes long and can be delivered via outreach or distance learning. The outreach program can be delivered to schools in the Anchorage, Mat-Su, and Kenai Peninsula areas, as well as villages in Alaska if funding is available. The distance learning program is presented via interactive videoconferencing and can be delivered to any classroom with videoconference equipment. The distance delivery method is taught in two parts, part 1 being the lesson and student assignment and part 2 for students to present their findings. Outreach pilot sessions were conducted in the Fall of 2010 with teacher and student evaluations in Seward, Soldotna, Cordova, and the Aleutians East Borough. The distance learning program has been piloted to sites in Valdez, Kodiak, Bethel, Virginia, and Ohio. The new marine invasive species program will promote awareness on this topic and thereby encourage early detection and prevention of marine invasives.
Weedy Worries on Campbell Tract: Summer 2010 Invasive Plant Surveys

Norlen, C.1
Flagstad, L.1
Cortés-Burns, H.1
Thorpe, L.2

1Alaska Natural Heritage Program, 2Bureau of Land Management

The Campbell Tract is a unique, 760-acre, Bureau of Land Management (BLM)-owned property located in the heart of Anchorage. Since 2006, the Alaska Natural Heritage Program (AKNHP) and BLM have collaborated on weed (non-native invasive plant) monitoring and management on this property. This summer, AKNHP continued these efforts by performing exhaustive inventories of non-native vascular species along major roads, trails, creeks and developed areas in and around Campbell Tract. To prioritize the infestations found during these surveys AKNHP developed a prioritization tool to rank infestations for treatment based on the tool provided in the Invasive Plants of Alaska guidebook. These rankings take into consideration: legal mandates and listings (e.g. Alaska Noxious Weeds list, invasiveness rank), location and character of infestation (e.g. eradicable infestation size, located in riparian area), and cultural concerns (e.g. impairs recreational experience, damages infrastructure). Based on the results of this summer’s weeds survey the prioritization tool indicated that three relatively rare and aggressive invasive species, European bird cherry (Prunus padus), Canada thistle (Cirsium arvense), and orange hawkweed (Hieracium aurantiacum), should be given the highest priority for treatment at Campbell Tract. Other species of concern in the Municipality of Anchorage present in Campbell Tract such as white sweetclover (Melilotus alba), yellow toadflax (Linaria vulgaris) and bird vetch (Vicia cracca) are more established in Campbell Tract and received lower rankings for treatment according to this tool. In practice, this prioritization tool could help direct limited resources to most effectively manage new and existing non-native plant infestations on Campbell Tract and elsewhere.
Alaska Bumble Bees Under Attack?

Pampell, R.¹
Pantoja, A.²
Ranft, R.¹
Holloway, P.¹
Sikes, D.¹
Knight, C.³

¹University of Alaska Fairbanks, ²USDA-Agricultural Research Service, ³Alaska Department of Natural Resources

Nosema spp. is a common microsporidian that has been known to affect a variety of insects including economically important insects such as the silkworm moth, grasshoppers, honey bees and bumble bees. Spillover of pathogens from commercial to wild bumble bees could lead to the transmission of diseases. *Nosema bombi*, that typically infects domesticated bumble bees, has invaded wild native bee colonies and is believe to be associated to catastrophic declines throughout North America. Little is known of the biology and transmission of the pathogen between host individuals in native bumble bee colonies, and reports are conflicting on the effects of the pathogen on the host, but possible effects include lower survival, crippled wings, swollen abdomens, and effects on reproduction parameters. The parasitic nematode, *Sphaerularia bombi* Dufour (Nematoda), affects hibernating bumble bee queens. Infested queens are not able to initiate colonies, but exhibit rather disordered behavior foraging for food and seeking out a new hibernation nest where she eventually dies. The objective of this study was to identify the presence of *Nosema* spores and nematodes that could affect native bumble bees. Preliminary examination of bumble bees from Alaska indicate the presence of both *Nosema* spores and *Sphaerularia* nematodes of bumble bees in Alaska.
Fighting weeds in the Kodiak Archipelago: Highlights of the Alaska Association of Conservation Districts’ 2010 field season at the Kodiak Soil & Water Conservation District

Persselin, Sara

Alaska Association of Conservation Districts, kodiakweeds@gmail.com

With funding from the American Recovery and Reinvestment Act, the Alaska Association of Conservation Districts supported two weeds programs at the Kodiak Soil and Water Conservation District (KSWCD) in 2010. The Invasive Plants Coordinator Program, funded through the USDA Forest Service, provided an Invasive Plants Coordinator (IPC) to conduct outreach and to survey for and eradicate invasive plants. The Early Detection Rapid Response (EDRR) Program, funded through the US Fish and Wildlife Service, provided three crew members to survey and conduct manual weed control and outreach over the summer. The summer crew was supervised by Blythe Brown of the KSWCD, and the KSWCD provided support for both programs. The IPC, Sara Persselin, and the EDRR crew, Wendy Wheatley (crew leader), Lauren Cooney and Max Smiley, were able to survey a number of remote areas of the archipelago, participate in outreach events and control weeds either manually or with herbicide. Highlights of the IPC’s summer were surveying and controlling orange hawkweed at the remote cannery site at Port Bailey with the help of other IPCs, surveying and controlling weeds at abandoned Akalura cannery, and finding an undocumented plant for Alaska on Afognak Island, Douglass’ meadowfoam. Highlights of the EDRR crew’s summer included finding a tansy ragwort in town, undocumented for Kodiak, pulling orange hawkweed along the Port Lions ATV trail, and removing a large infestation of hawkbit on Near Island. Many of the projects were completed in cooperation with the help of federal and state agencies, native corporations, local government and individuals and fostered connections for future weeds work.
Building a Model for Place-Based Invasive Plant Education in Alaskan Schools: Japanese Knotweed Control Study at Fawn Mountain Elementary, Ketchikan

Spellman, Katie V.

Center for Alaskan Coastal Studies, Homer, AK, and University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, katie.spellman@alaska.edu

125 students in grades 3-6 at Fawn Mountain Elementary, Ketchikan, worked with ecologists and educators from the Center for Alaskan Coastal Studies to investigate the best way to get rid of a serious invasive plant infestation on their playground. Following the construction of the school five years ago, Japanese Knotweed (*Fallopia japonica*) seedlings began to emerge from the imported fill used to complete the schoolyard. Students studied their target species in depth, and designed an experiment to investigate the best manual control method to get rid of the Japanese Knotweed. Five classes set up blocks of 50 cm x 50 cm plots with three treatments: clipped knotweed, clipped and tarped knotweed, and dug knotweed. A single control plot was established for the school, so students could see what would happen if no treatment was applied. Each class counted the initial number of seedlings in each of their plots in the first week of school, applied the treatments, and then recounted the number of seedlings after one month. Teachers plan to leave the plots over the winter and reassess their results at the beginning of the growing season. After one month, students found that digging the knotweed was the most effective treatment, and nearly eliminated the knotweed from all plots. Students proposed to do a school-wide service-learning day in the spring to use their results and dig up the knotweed around their school.
The Invasive Plants of Alaska Educator Workshops aim to train K-12 educators throughout the state in the use of Alaska-specific elementary and secondary level invasive plant curricula, *Weed Wackers: K-6 Educators Guide to Invasive Plants of Alaska* and *Invasive Plants Taking Root in Alaska*. A two-day workshop is offered for 500-level professional development credit through the UAA-PACE program. ½ day or 1 day workshops are also offered without credit. The workshop’s primary audience has been K-12 public and private school teachers, and agency employees dealing with invasive plants who often visit classrooms for program outreach. During the course of the workshop, participants learn invasive plant biology and identification, become exposed to the teaching resources available on the topic around the state, gain hands-on experience implementing the curriculum activities using the science learning cycle model, practice ecological field methods used in some of the lessons and gain tips on how to approach these methods with K-12 students. In the first year of workshops, we trained educators from 52 schools and agencies from 16 different towns throughout the state. Based on pre-and post-workshop evaluations, our workshops have led to significant increases in awareness of AK teaching resources on invasive plants (31% increase in awareness between pre- and post-evaluations), confidence in content knowledge to be able to successfully teach about invasive plants in the classroom (27% increase), and comfort level in sharing student discoveries with AK scientists interested in the topic (13% increase). Workshops will continue to be offered in the future.
ARRA Invasive Plant Coordinators

White, Dana
Hope, Joan

Alaska Association of Conservation Districts, invasive.plants.jnu@gmail.com

The Alaska Association of Conservation Districts representing the Soil and Water Districts of Alaska, in a cooperative agreement with the US Forest Service Health and Protection funded by the American Reinvestment and Recovery Act, hired a team of 13 invasive plant coordinators and a summer weed crew to work in communities across Alaska developing and implementing invasive weed programs, outreach and education, community weed pulls, and control efforts. Six months into the program we will highlight some of our achievements.
Giant Hogweed In Southeast Alaska

Winter, Genelle

Metlakatla Indian Community, mic_landscaping@yahoo.com

Our poster was created to help educate our community about this plant, its particular hazards and how to identify it as different from ‘wild celery’, which is well known in our area. It raises awareness of various pathways it could be spread in addition to its special ability to cause significant burns on unwary victims. We are using this weed, as an opportunity to build on existing weed awareness activities and to generate conversation on the topic in general, which is helpful to our community.
In June 2010, Metlakatla Indian Community was invited to the biannual Weeds Across Borders Conference in West Virginia. We are sharing the poster that we brought with CNIPM. It basically summarizes our work in Metlakatla, which is the Southernmost Community in Alaska connected by ferry to neighboring island communities. In 2003 and 2004 a survey of SE Alaska by a Plant Ecologist made us aware of invasive plants on Annette Island. In 2005 we started a weed control program applying for and receiving funding from the Bureau of Indian Affairs Noxious Weed Eradication Program Funding. This enabled us to initiate an invasive plant management plan and to carry out weed control work that summer. One of the first things we did was apply to our local council for a resolution of support. The next step was to conduct a thorough survey of Annette Island. Our target weeds of concern are Japanese Knotweed, Himalayan Knotweed, Canada, Bull and, Sow Thistle, Orange Hawkweed and Tansy Ragwort. Our reasons for choosing these species is their negative impact on local fishing industry and out competing the local berry bushes and other wild edibles.

In harmony with cultural values we chose to use manual methods avoiding chemicals that could potentially the harvesting of berries and wild edibles. We have established manual controls for each species. We have an extensive community education and outreach program, so we focus on reaching out to the community making them partners in weed control. We involve the youth in weed pull activities and build on knowledge of invasive species. In conclusion, we are hopeful that with continued effort we can control known species and prevent introduction of new invasive species by keeping the community partners in this ongoing project.