Assessing potential interactions of in-river hydrokinetic turbines and fishes

Andy Seitz
Parker Bradley, Mark Evans
Background

• Fishes in Alaska are important in sport, commercial and subsistence fisheries

• Many of them undertake predictable migratory movements down or up rivers
Fish may migrate in river margins...

...or the deepest, fastest part of a river

Potential overlap in time and space of hydrokinetic devices and fishes
Goal: Assess potential interactions of turbines and juvenile fishes by conducting pre-deployment baseline sampling studies at potential turbine sites.

Objectives:
1. Species composition
2. Relative abundance of species
3. Migration locations
4. Migration timing
Pre-deployment baseline studies

Yukon River 2010
Tanana River 2011
River Margin Methods

Picture courtesy of Todd Paris - UAF
Mid-channel Methods
After capture
Pre-deployment studies

• Yielded important information about:
 – Species composition of catches
 – Relative abundance of species
 – Migration locations
 – Migration timing
Yukon River margins

- Captured 6,312 fishes
- 499 total fyke net settings

- Longnose Sucker - 2,523
- Arctic Grayling - 1,932
- Whitefish spp. - 1,167
- Chum salmon - 336
- Chinook salmon - 131
- Lake Chub - 90
- Lamprey - 77
- Burbot - 28
- Inconnu - 23
- Slimy sculpin - 5
Tanana River margins

- Captured 4,136 fishes
- 384 total fyke net settings

- Whitefish spp. - 1,589
- Longnose sucker - 1,000
- Chum salmon - 775
- Lake chub - 559
- Arctic lamprey - 131
- Arctic grayling - 31
- Chinook /Coho salmon - 22
- Burbot - 22
- Slimy sculpin - 4
- Alaska brook lamprey - 2
- Northern pike - 1
Tanana River mid-channel

• Captured 583 fishes
• 73 total incline plane trap sets

• Chinook/Coho salmon - 330
• Chum salmon - 239
• Whitefish sp. - 10
• Arctic Lamprey - 3
• Burbot - 1
Tanana River 2011
Chinook/coho salmon

CPUE

May June July
Information from pre-deployment studies

- Abundance and species composition of catches depends on river, and timing and location of sampling
- Some primarily captured in margins
 - Longnose Sucker
 - Arctic Grayling
 - Whitefish spp.
 - Chum salmon
 - Lake Chub
 - Burbot
 - Inconnu
 - Slimy Sculpin
 - Northern Pike
 - Lamprey
- Some primarily captured in the middle of the channel
 - Chinook/coho Salmon
 - Chum Salmon
Information from pre-deployment studies

<table>
<thead>
<tr>
<th>Some occur in seasonal peaks</th>
<th>Some occur during entire ice-free period</th>
<th>Implications:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Grayling</td>
<td>Whitefish spp.</td>
<td>Chum salmon</td>
</tr>
<tr>
<td>Chinook/coho salmon (Age 1)</td>
<td>Chinook salmon (Age 0)</td>
<td>Lake Chub</td>
</tr>
<tr>
<td>Inconnu</td>
<td>Lamprey</td>
<td>Burbot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longnose Sucker</td>
</tr>
</tbody>
</table>

Downmigrating Chinook, coho and chum salmon smolts during the months of May and June potentially will have the most interactions with a hydrokinetic turbine.
Needed information

• Adult fish abundance, species composition, and migratory distribution and timing, especially in relation to hydrographic features
• Post-deployment studies:
 - Changes in distribution in response to turbine
 - Fish behavior near turbine
 - Viability of fishes passing through turbine
Funding:
Alaska Energy Authority
Denali Commission
ORPC Alaska
University of Alaska Fairbanks